Given that the function of the wave is f(x) = cos(π•t/2), we have;
a. The graph of the function is attached
b. 4 units of time
c. Even
d. 4.935 J/kg
e. 1.234 W/kg
<h3>How can the factors of the wave be found?</h3>
a. Please find attached the graph of the signal created with GeoGebra
b. The period of the signal, T = 2•π/(π/2) = <u>4</u>
c. The signal is <u>even</u>, given that it is symmetrical about the y-axis
d. The energy of the signal is given by the formula;

Which gives;
E = 0.5 × 1.571² × 1² × 4 = <u>4.935 J/kg</u>
e. The power of the wave is given by the formula;
E = 0.5 × 1.571² × 1² × 4 × 0.25 = <u>1.234 W/</u><u>kg</u>
Learn more about waves here:
brainly.com/question/14015797
Answer:
The answer to your question is
Explanation:
Data
mass = 0.5kg
T1 = 35
T2 = ?
Q = - 6.3 x 10⁴ J = - 63000 J
Cp = 4184 J / kg°C
Formula
Q = mCp(T2 - T1)
T2 = T1 + Q/mCp
Substitution
T2 = 35 - 63000/(0.5 x 4184)
T2 = 35 - 63000/2092
T2 = 35 - 30.1
T2 = 4.9 °C
some ball when you bounce it it comes back up but according to gravity the energy goes away
That's a molecule of the substance. You can break the molecule down further, into the atoms that make it up, but those don't have the properties of the original 'compound'.
Here's an example:
-- Sodium is a soft, slippery metal, that explodes when water touches it.
-- Chlorine is a poisonous green gas.
When an atom of Sodium and an atom of Chlorine combine, they make one molecule of a substance called "Sodium Chloride". That's SALT ! It isn't green, it isn't a gas, it isn't poisonous, it isn't soft and slippery, and it doesn't explode when water touches it.
Explanation:
First we will convert the given mass from lb to kg as follows.
157 lb = 
= 71.215 kg
Now, mass of caffeine required for a person of that mass at the LD50 is as follows.

= 12818.7 mg
Convert the % of (w/w) into % (w/v) as follows.
0.65% (w/w) = 
= 
= 
Therefore, calculate the volume which contains the amount of caffeine as follows.
12818.7 mg = 12.8187 g = 
= 1972 ml
Thus, we can conclude that 1972 ml of the drink would be required to reach an LD50 of 180 mg/kg body mass if the person weighed 157 lb.