Answer is (1) - no reaction.
<em>Explanation;
</em>
Some of you may think this reaction as a single replacement reaction which gives NaBr + F₂ as products.
But, according to the reactivity of the halogens, reactivity decreases from up to bottom of the group. F is placed above Br. Hence, F is more reactive than Br. Hence, Br can't replace F.
Answer: Their main aim was to provide goods, specifically furs and sugar exportation.
Explanation:
<span>We can solve this problem by assuming that the decay of
cyclopropane follows a 1st order rate of reaction. So that the
equation for decay follows the expression:</span>
A = Ao e^(- k t)
Where,
A = amount remaining at
time t = unknown (what to solve for) <span>
Ao = amount at time zero = 0.00560
M </span><span>
<span>k = rate constant
t = time = 1.50 hours or 5400 s </span></span>
The rate constant should
be given in the problem which I think you forgot to include. For the sake of
calculation, I will assume a rate constant which I found in other sources:
k = 5.29× 10^–4 s–1 (plug in the correct k value)
<span>Plugging in the values
in the 1st equation:</span>
A = 0.00560 M * e^(-5.29 × 10^–4 s–1 * 5400 s )
A = 3.218 <span>× 10^–4 M (simplify
as necessary)</span>
A type of electromagnetic radiation would be electromagnetic waves
step one
calculate the % of oxygen
from avogadro constant
1moles = 6.02 x 10 ^23 atoms
what about 4.33 x10^22 atoms
= ( 4.33 x 10^ 22 x 1 mole ) / 6.02 10^23= 0.0719 moles
mass= 0.0719 x16= 1.1504 g
% composition is therefore= ( 1.1504/3.25) x100 = 35.40%
step two
calculate the % composition of chrorine
100- (25.42 + 35.40)=39.18%
step 3
calculate the moles of each element
that is
Na = 25.42 /23=1.1052 moles
Cl= 39.18 /35.5=1.1037moles
O= 35.40/16= 2.2125 moles
step 4
find the mole ratio by dividing each mole by 1.1037 moles
that is
Na = 1.1052/1.1037=1.001
Cl= 1.1037/1.1037= 1
0=2.2125 = 2
therefore the empirical formula= NaClO2