The answer is $103.05! Not a bad price if you ask me!
The line that is perpendicular to the line on the graph is y=3
Answer:
The 95% confidence interval for the mean of all body temperatures is between 97.76 ºF and 99.12 ºF
Step-by-step explanation:
We have the standard deviation for the sample, so we use the t-distribution to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 10 - 1 = 9
95% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 9 degrees of freedom(y-axis) and a confidence level of
. So we have T = 2.2622
The margin of error is:
M = T*s = 2.2622*0.3 = 0.68
In which s is the standard deviation of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 98.44 - 0.68 = 97.76 ºF
The upper end of the interval is the sample mean added to M. So it is 98.44 + 0.68 = 99.12 ºF
The 95% confidence interval for the mean of all body temperatures is between 97.76 ºF and 99.12 ºF
The function you seek to minimize is
()=3‾√4(3)2+(13−4)2
f
(
x
)
=
3
4
(
x
3
)
2
+
(
13
−
x
4
)
2
Then
′()=3‾√18−13−8=(3‾√18+18)−138
f
′
(
x
)
=
3
x
18
−
13
−
x
8
=
(
3
18
+
1
8
)
x
−
13
8
Note that ″()>0
f
″
(
x
)
>
0
so that the critical point at ′()=0
f
′
(
x
)
=
0
will be a minimum. The critical point is at
=1179+43‾√≈7.345m
x
=
117
9
+
4
3
≈
7.345
m
So that the amount used for the square will be 13−
13
−
x
, or
13−=524+33‾√≈5.655m
Answer:
Step-by-step explanation:
The formula for <u>exponential growth</u> is y = ab^x.
To write this equation, we know it has to start with 48 (which is the variable a). We need to add the rate of growth. This is 11/6 (which is variable b). But we also need to account for the "every 3.5 years" part, so divide the x as an exponent by 3.5.
N(t) = 48 * 11/6^(t/3.5)
This equation is easy to test, and it's a good idea to test it after you write it. For example, after 3.5 years we know that it should have 48*11/6 branches. Does our equation work? Yes.