The answer to both is D. Here's why:
For the first, whenever motion changes in a magnetic field, it causes electrons to move. Electricity, which is needed to power a lightbulb, is just a term for movement of these electrons. Electrons aren't created, they're always there in the wire. It's just that the permanent magnet gets them to move, which produces electricity.
For the second, it is very similar to the first. A magnet won't cause any electric current at rest, it always requires motion in order to produce an electric current. If you keep both of those in mind, it should help in the future. Hope this helps!
Answer:
Rate of formation of SO₃
= 7.28 x 10⁻³ M/s
Explanation:
According to equation 2 SO₂(g) + O₂(g) → 2 SO₃(g)
Rate of disappearance of reactants = rate of appearance of products
⇒
-----------------------------(1)
Given that the rate of disappearance of oxygen =
= 3.64 x 10⁻³ M/s
So the rate of formation of SO₃
= ?
from equation (1) we can write
![\frac{d[SO_{3}] }{dt} = 2 [-\frac{d[O_{2}] }{dt} ]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BSO_%7B3%7D%5D%20%7D%7Bdt%7D%20%3D%202%20%5B-%5Cfrac%7Bd%5BO_%7B2%7D%5D%20%7D%7Bdt%7D%20%5D)
⇒
= 2 x 3.64 x 10⁻³ M/s
⇒
= 7.28 x 10⁻³ M/s
∴ So the rate of formation of SO₃
= 7.28 x 10⁻³ M/s
Group 8 elements. They are unreactive and stable
Answer:
D. All of these.
Explanation:
For an equation to be balanced the number of atoms of each kind in the reactants and the products should be the same.
Then from this equation, CO is a product.
Last, two carbon atoms undergo reaction with the oxygen molecule for complete reaction to occur. Each atom combines with one oxygen atom.
It depends on the pH if the base. but normally light colors are for bases example blue green etc