Answer:
The answer to your question is letter B, 2-methylhexane.
Explanation:
Remember that for naming organic compounds first, we need to look for the largest chain of carbons.
In your example, the largest chain is horizontal and has 6 carbons.
Later, we need to circle all the branches, in your example there is only one branch located close to the left side
After that, we number the carbons of the main chain, starting in the corner with more branches, in your example we start from the first carbon on the left.
Finally, start naming the number of the carbon branch, later hte name of the branch and finally the name of the main chain.
Answer:
It usually leads to more confidence in the results
Answer:
0.107 mole of SO2.
Explanation:
1 mole of a gas occupy 22.4 L at standard temperature and pressure (STP).
With the above information, we can simply calculate the number of mole of SO2 that will occupy 2.4 L at STP.
This can be obtained as follow:
22.4 L contains 1 mole of SO2.
Therefore, 2.4 L will contain = 2.4/22.4 = 0.107 mole of SO2.
Therefore, 0.107 mole of SO2 is present in 2.4 L at STP.
0.250 mol/L
<em>Step 1</em>. Write the chemical equation
H2SO4 + 2NaOH → Na2SO4 + 2H2O
<em>Step 2</em>. Calculate the moles of H2SO4
Moles of H2SO4 = 12.5 mL H2SO4 × (0.500 mmol H2SO4/1 mL H2SO4)
= 6.25 mmol H2SO4
<em>Step 3</em>. Calculate the moles of NaOH
Moles of NaOH = 6.25 mmol H2SO4 × (2 mmol NaOH/(1 mmol H2SO4)
= 12.5 mmol NaOH
<em>Step 4</em>. Calculate the concentration of the NaOH
[NaOH] = moles/litres = 12.5 mmol/50.0 mL = 0.250 mol/L