For this use the formula:
d = Vo * t - (at^2) / 2
Clearing t:
t = d/(v + 0.5*a)
Replacing:
t = 5 m / (7.2 m/s + 0.5 * (-1.1 m/s²)
Resolving:
t = 5 m / (7.2 m/s + (-0.55 m/s²)
t = 5 m / 6.65 m/s
t = 0.75 s
Result:
The time will be <u>0.75 seconds.</u>
<span>k = 1.7 x 10^5 kg/s^2
Player mass = 69 kg
Hooke's law states
F = kX
where
F = Force
k = spring constant
X = deflection
So let's solve for k, the substitute the known values and calculate. Don't forget the local gravitational acceleration.
F = kX
F/X = k
115 kg* 9.8 m/s^2 / 0.65 cm
= 115 kg* 9.8 m/s^2 / 0.0065 m
= 1127 kg*m/s^2 / 0.0065 m
= 173384.6154 kg/s^2
Rounding to 2 significant figures gives 1.7 x 10^5 kg/s^2
Since Hooke's law is a linear relationship, we could either use the calculated value of the spring constant along with the local gravitational acceleration, or we can simply take advantage of the ratio. The ratio will be both easier and more accurate. So
X/0.39 cm = 115 kg/0.65 cm
X = 44.85 kg/0.65
X = 69 kg
The player masses 69 kg.</span>
The steps<span> of the </span>scientific method<span> are to: Ask a Question. Do Background Research. Construct a Hypothesis. Test Your Hypothesis by Doing an Experiment. Analyze Your Data and Draw a Conclusion.</span>
The characteristic that gives an element its distinctive properties is its number of protons because the number of protons of any element represents its atomic number.
<h3>What is the atomic number?</h3>
The total number of protons present in an atom is known as the atomic number of that atom. The atomic number has no correlation either with the number of neutrons or the number of electrons present inside an atom.
Since the number of protons in any element corresponds to its atomic number, this property provides an element with its particular features.
Learn more about the atomic number from here,
brainly.com/question/14190064
#SPJ4