The power in horsepower is 40.1 hp
Explanation:
We start by calculating the work done by the airplane during the climb, which is equal to its change in gravitational potential energy:

where
mg = 11,000 N is the weight of the airplane
is the change in height
Substituting,

Now we can calculate the power delivered, which is given by

where
is the work done
is the time taken
Substituting,

Finally, we can convert the power into horsepower (hp), keeping in mind that

Therefore,

Learn more about power:
brainly.com/question/7956557
#LearnwithBrainly
The gravitational force between <em>m₁</em> and <em>m₂</em> has magnitude

while the gravitational force between <em>m₁</em> and <em>m₃</em> has magnitude

where <em>x</em> is measured in m.
The mass <em>m₁</em> is attracted to <em>m₂</em> in one direction, and attracted to <em>m₃</em> in the opposite direction such that <em>m₁</em> in equilibrium. So by Newton's second law, we have

Solve for <em>x</em> :

The solution with the negative square root is negative, so we throw it out. The other is the one we want,

Answer:
For the complete question provided in explanation, if the elevator moves upward, then the apparent weight will be 1035 N. While for downward motion the apparent weight will be 435 N.
Explanation:
The question is incomplete. The complete question contains a velocity graph provided in the attachment. This is the velocity graph for an elevator having a passenger of 75 kg.
From the slope of graph it is clear that acceleration at t = 1 sec is given as:
Acceleration = a = (4-0)m/s / (1-0)s = 4 m/s^2
Now, there are two cases:
1- Elevator moving up
2- Elevator moving down
For upward motion:
Apparent Weight = m(g + a)
Apparent Weight = (75 kg)(9.8 + 4)m/s^2
<u>Apparent Weight = 1035 N</u>
For downward motion:
Apparent Weight = m(g - a)
Apparent Weight = (75 kg)(9.8 - 4)m/s^2
<u>Apparent Weight = 435 N</u>
Answer:
a) 6.9*10^14 Hz
b) 9*10^-12 T
Explanation:
From the question, we know that
435 nm is given as the wavelength of the wave, at the same time, we also know that the amplitude of the electric field, E(max) has been given to be 2.7*10^-3 V/m
a)
To find the frequency of the wave, we would be applying this formula
c = fλ, where c = speed of light
f = c/λ
f = 3*10^8 / 435*10^-9
f = 6.90*10^14 Hz
b) again, to find the amplitude of the magnetic field, we would use this relation
E(max) = B(max) * c, magnetic field amplitude, B(max) =
B(max) = E(max)/c
B(max) = 2.7*10^-3 / 3*10^8
B(max) = 9*10^-12 T
c) and lastly,
1T = 1 (V.s/m^2)
Answer:
0.336 rad/s
Explanation:
= Angular speed of the turntable = -0.2 rad/s
R = Radius of turntable = 2.9 m
I = Moment of inertia of turntable = 
M = Mass of turn table = 53 kg
= Magnitude of the runner's velocity relative to the earth = 3.6 m/s
As the momentum in the system is conserved we have

The angular velocity of the system if the runner comes to rest relative to the turntable which is the required answer is 0.336 rad/s