The total pressure when the new equilibrium is stabilized is half of the initial pressure of the system.
The given chemical reaction at a stable equilibrium is,
2H₂O(g)+O₂(g) = 2H₂O₂(g)
According to the ideal gas equation,
PV = nRT
P is pressure,
V is volume,
n is moles
R is gas constant,
T is temperature.
Assuming the temperature is constant.
If the volume of the system is twice the initial volume then the total pressure at the new equilibrium can be found out as,
P₁V₁ = P₂V₂
Where, P₁ and V₁ are initial volume and pressure while P₂ and V₂ are final pressure and volume.
If V₂ = 2V₁,
P₂ = P₁/2
So, the final total pressure will be half of the initial pressure.
To know more about equilibrium, visit,
brainly.com/question/517289
#SPJ4
Answer:
54.1 % Ca, 43.2 % O, 2.7% H
Explanation:
Molecular formula for calcium hydroxide is Ca(OH)₂
As we don't have a mass of Ca(OH)₂ to find out the percentage composition, we consider that the question refers to 1 mol of compound.
1 mol of hydroxide weighs 74.08 g
1 mol of hydroxide has 1 mol of Ca, therefore 40.08 g are Ca
2 moles of O therefore 32g are O
2 moles of H therefore 2 g are H
Percentage composition is known as (Mass of element/Total mass) . 100
(40.08 / 74.08) . 100 = 54.1 %
(32 / 74.08) . 100 = 43.2 %
(2 / 74.08) . 100 = 2.7%
im a smart one
Answer:
The minimum rate of fresh air in the room is 176 moles/min
Explanation:
High exposure of CO₂ has health effects as headaches, increased heart rate, elevated blood pressure, coma, asphyxia, convulsions, etc.
0,500 mole% of CO₂ in air means 0,500 moles of CO₂ per 100 moles of air
As the rate of sublimation of CO₂ is 0,880, the minimum rate of fresh air in the room must be:
X = <em>176 moles of Air/min</em>
<em></em>
I hope it helps!
Answer:
The advantages described below
Explanation:
Advantages of a balanced chemical equation versus word equation:
- easier to read: chemical equations typically only take one line and they include all the relevant information needed. They are short-hand notations for what we describe in words.
- balanced chemical equations show molar ratio in which reactants react and the molar ratio of the products. Those are coefficients in front of the species. This is typically not included in a word equation, for example, hydrochloric acid reacts with potassium hydroxide. The latter statement doesn't describe the molar ratio and stoichiometry.
- includes relevant information, such as catalysts, temperature and pressure above the arrow in the equation. We wouldn't have this in a word equation most of the time.
- shows the stoichiometry of each compound itself, e. g. if we state 'ammonia', we don't know what atoms it consists of as opposed to
. - includes states of matter: aqueous, liquid, gas, solid. This would often be included in a word equation, however.