-- Put the rod into the freezer for a while. As it cools,
it contracts (gets smaller) slightly.
-- Put the cylinder into hot hot water for a while. As it heats,
it expands (gets bigger) slightly.
-- Bring the rod and the cylinder togther quickly, before the
rod has a chance to warm up or the cylinder has a chance
to cool off.
-- I bet it'll fit now.
-- But be careful . . . get the rod exactly where you want it as fast
as you can. Once both pieces come back to the same temperature,
and the rod expands a little and the cylinder contracts a little, the fit
will be so tight that you'll probably never get them apart again, or even
move the rod.
Answer:
Xc= 17.267 Ω, Z= 415.5 Ω, I= 0.537 A
Explanation:
Em = 223 V
f= 300 Hz, R = 222 Ω, L = 147 mH, C = 23.1 μF
a)
Capacitive reactance = Xc=?
Xc= 
Xc=1/2pi *399*23.1*10^-6
Xc= 17.267 Ω
b).
Z=
Xl= 2π * f * L
Xl= 2π * 399 * 147 * 
Xl= 368.5 Ω
Z=
= 
Z= 415.5 Ω
c).
Current:
I= V / Z= Em / Z
I= 223/415.5
I= 0.537 A
Because: Some of the work done by the machine is used to overcome the friction created by the use of the machine. ... Work output can never be greater than work input. Machines allow force to be applied over a greater distance, which means that less force will be needed for the same amount of work.
Answer:
∈=
Explanation:
Using the Gauss Law to determine the electric field of the net flux at the surface of the nucleus
∈
The P is the charge density and 'Eo' is the constant of permittivity in free space
to find P





So replacing
∈
∈=
The first thing to do is to define the origin of the coordinate system as the point at which the moped journey begins.
Then, you must write the position vector:
r = -3j + 4i + 3j
Rewriting
r = 4i
To go back to where you started, you must go
d = -4i
That is to say, must travel a distance of 4Km to the west.
Answer
West, 4km.