Answer:
Option ( B ) is correct .
Explanation:
To lift a heavy weight , inclined plane is used . Use of inclined plane , makes the task easier because instead of force mg , force mg sinθ is to be used which is less than mg . Here θ is inclination of inclined plane.
If h be the height by which weight is to be lifted
potential energy acquired by weight = mgh
work done by force mg sinθ = mgsinθ x d where d is displacement required .
mg sinθ x d = mgh ( work done by force = potential energy stored in luggage )
d = h / sinθ
d will be more than h
Hence inclined plane increases the distance to be covered by force applied though it decreases the force itself.
Hence option ( B ) is correct .
Answer:
The weight is the gravitational force with which a body is attached to the Earth (planet/moon) Weight of any object on earth depends on two factors mass and gravitational constant. As per law, W = mg where, g is gravitational constant 9.8 m/s/s
Answer:
W=561.41 J
Explanation:
Given that
m = 51 kg
μk = 0.12
θ = 36.9∘
Lets F is the force applied by man
Given that block is moving at constant speed it mans that acceleration is zero.
Horizontal force = F cos θ
Vertical force = F sinθ
Friction force Fr= μk N
N + F sinθ = m g
N = m g - F sinθ
Fr = μk (m g - F sinθ)
For equilibrium
F cos θ = μk (m g - F sinθ)
F ( cos θ +μk sinθ) = μk (m g
Now by putting the values
F ( cos 36.9∘ + 0.12 x sin36.9∘)=0.12 x 51 x 10
F= 70.2 N
We know that Work
W= F cos θ .d
W= 70.2 x cos 36.9∘ x 10
W=561.41 J
Mass = 1kg
Distance = 1m
Time = 1s
Force= Mass x Acceleration due to graviy
= 1 x 9.8 = 9.8
Velocity = Distance / time
= 1 / 1 =1m/s
Power = Force x velocity
= 9.8 x 1 = 9.8 W
Answer:
173.99 centimeters
Explanation:
multiply the length value by 2.54