1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arturiano [62]
3 years ago
9

What is equation for surface area?

Engineering
1 answer:
Marysya12 [62]3 years ago
6 0

Answer:

Surface area is the sum of the areas of all faces (or surfaces) on a 3D shape. pls mark me branilest

You might be interested in
How to design a solar panel<br>​
artcher [175]

Answer:

#1) Find out how much power you need

#2 Calculate the amount of batteries you need.

#3 Calculate the number of solar panels needed for your location and time of year.

#4 Select a solar charge controller.

#5 Select an inverter.

#6 Balance of system

Explanation: To design solar panel, consider the following steps

1.) Find the power consumption demands

The first step in designing a solar PV system is to find out the total power and energy consumption of all loads that need to be supplied by the solar PV system as follows:

Calculate total Watt-hours per day for each appliance used.

 Add the Watt-hours needed for all appliances together to get the total Watt-hours per day which must be delivered to the appliances.

Calculate total Watt-hours per day needed from the PV modules.

Multiply the total appliances Watt-hours per day times 1.3 (the energy lost in the system) to get the total Watt-hours per day which must be provided by the panels.

2. Size the PV modules

Different size of PV modules will produce different amount of power. To find out the sizing of PV module, the total peak watt produced needs. The peak watt (Wp) produced depends on size of the PV module and climate of site location. We have to consider panel generation factor which is different in each site location. For Thailand, the panel generation factor is 3.43. To determine the sizing of PV modules, calculate as follows:

2.1 Calculate the total Watt-peak rating needed for PV modules

Divide the total Watt-hours per day needed from the PV modules (from item 1.2) by 3.43 to get the total Watt-peak rating needed for the PV panels needed to operate the appliances.

Calculate the number of PV panels for the system

Divide the answer obtained in item 2.1 by the rated output Watt-peak of the PV modules available to you. Increase any fractional part of result to the next highest full number and that will be the 

number of PV modules required.

Result of the calculation is the minimum number of PV panels. If more PV modules are installed, the system will perform better and battery life will be improved. If fewer PV modules are used, the system may not work at all during cloudy periods and battery life will be shortened.

3. Inverter sizing

An inverter is used in the system where AC power output is needed. The input rating of the inverter should never be lower than the total watt of appliances. The inverter must have the same nominal voltage as your battery.

For stand-alone systems, the inverter must be large enough to handle the total amount of Watts you will be using at one time. The inverter size should be 25-30% bigger than total Watts of appliances. In case of appliance type is motor or compressor then inverter size should be minimum 3 times the capacity of those appliances and must be added to the inverter capacity to handle surge current during starting.

For grid tie systems or grid connected systems, the input rating of the inverter should be same as PV array rating to allow for safe and efficient operation.

4. Battery sizing

The battery type recommended for using in solar PV system is deep cycle battery. Deep cycle battery is specifically designed for to be discharged to low energy level and rapid recharged or cycle charged and discharged day after day for years. The battery should be large enough to store sufficient energy to operate the appliances at night and cloudy days. To find out the size of battery, calculate as follows:

     4.1 Calculate total Watt-hours per day used by appliances.

     4.2 Divide the total Watt-hours per day used by 0.85 for battery loss.

     4.3 Divide the answer obtained in item 4.2 by 0.6 for depth of discharge.

     4.4 Divide the answer obtained in item 4.3 by the nominal battery voltage.

     4.5 Multiply the answer obtained in item 4.4 with days of autonomy (the number of days that you need the system to operate when there is no power produced by PV panels) to get the required Ampere-hour capacity of deep-cycle battery.

Battery Capacity (Ah) = Total Watt-hours per day used by appliancesx Days of autonomy

(0.85 x 0.6 x nominal battery voltage)

5. Solar charge controller sizing

The solar charge controller is typically rated against Amperage and Voltage capacities. Select the solar charge controller to match the voltage of PV array and batteries and then identify which type of solar charge controller is right for your application. Make sure that solar charge controller has enough capacity to handle the current from PV array.

For the series charge controller type, the sizing of controller depends on the total PV input current which is delivered to the controller and also depends on PV panel configuration (series or parallel configuration).

According to standard practice, the sizing of solar charge controller is to take the short circuit current (Isc) of the PV array, and multiply it by 1.3

Solar charge controller rating = Total short circuit current of PV array x 1.3

5 0
3 years ago
For each function , sketch the Bode asymptotic magnitude and asymptotic phase plots.
horrorfan [7]

Answer:

attached below

Explanation:

a) G(s) = 1 / s( s+2)(s + 4 )

Bode asymptotic magnitude and asymptotic phase plots

attached below

b) G(s) = (s+5)/(s+2)(s+4)

phase angles = tan^-1 w/s , -tan^-1 w/s , tan^-1 w/4

attached below

c) G(s)= (s+3)(s+5)/s(s+2)(s+4)

solution attached below

5 0
3 years ago
Sensors are used to monitor the pressure and the temperature of a chemical solution stored in a vat. The circuitry for each sens
JulsSmile [24]
Circle because it’s round and we all love round things
5 0
3 years ago
Steam at 20 bars is in the saturated vapor state (call this state 1) and contained in a pistoncylinderdevice with a volume of 0.
saul85 [17]

Answer:

Explanation:

Given that:

<u>At state 1:</u>

Pressure P₁ = 20 bar

Volume V₁ = 0.03 \mathbf{m^{3}}

From the tables at saturated vapour;

Temperature T₁ = 212.4⁰ C  ; v_1 = vg_1 = 0.0996 \mathbf{m^{3}} / kg

The mass inside the cylinder is m = 0.3 kg, which is constant.

The specific internal energy u₁ = ug₁ = 2599.2 kJ/kg

<u>At state 2:</u>

Temperature T₂ = 200⁰ C

Since the 1 - 2 occurs in an isochoric process v₂ = v₁ = 0.099 \mathbf{m^{3}} / kg

From temperature T₂ = 200⁰ C

v_f_2 = 0.0016 \ m^3/kg  

vg_2 = 0.127 \ m^3/kg  

Since  vf_2 < v_2 , the saturated pressure at state 2 i.e. P₂ = 15.5 bar

Mixture quality x_2 = \dfrac{v_2-vf_2}{vg_2 -vf_2}

x_2 = \dfrac{(0.099-0.0016)m^3/kg}{(0.127 -0.0016) m^3/kg}

x_2 = \dfrac{(0.0974)m^3/kg}{(0.1254) m^3/kg}

\mathsf{x_2 =0.78}

At temperature T₂, the specific internal energy u_f_2 = 850.6 \ kJ/kg , also ug_2 = 2594.3 \ kJ/kg

Thus,

u_2 = uf_2 + x_2 (ug_2 -uf_2)

u_2 =850.6  +0.78 (2594.3 -850.6)

u_2 =850.6  +1360.086

u_2 =2210.686 \ kJ/kg

<u>At state 3:</u>

Temperature T_3=T_2 = 200 ^0 C ,

V_3 = 2V_1 = 0.06 \ m^3

Specific volume v_3 = 0.2  \ m^3/kg

Thus; vg_3 =vg_2 = 0.127 \ m^3/kg ,

SInce v_3 > vg_3, therefore, the phase is in a superheated vapour state.

From the tables of superheated vapour tables; at v_3 = 0.2  \ m^3/kg and T₃ = 200⁰ C

The pressure = 10 bar and v =0.206 \ m^3/kg

The specific internal energy u_3 at the pressure of 10 bar = 2622.3 kJ/kg

The changes in the specific internal energy is:

u_2-u_1

= (2210.686 - 2599.2) kJ/kg

= -388.514 kJ/kg

≅ - 389 kJ/kg

u_3-u_2

= (2622.3 - 2210.686)  kJ/kg

= 411.614 kJ/kg

≅ 410 kJ/kg  

We can see the correct sketches of the T-v plot showing the diagrammatic expression in the image attached below.

3 0
3 years ago
Which regulations are related to guard rail height and dimensions and uniformity of stairs?
galina1969 [7]

Answer:

C.

structural safety

Explanation:

Guards protecting floor surfaces must be 36 inches in height, while guards for stairs must be 34 inches in height measured vertically from the tread nosing. A guard may also serve as the required handrail (34 to 38 inches high) provided the top rail meets the requirements for grip size.

4 0
3 years ago
Read 2 more answers
Other questions:
  • Which of the following should NOT be included in an emergency kit?
    13·2 answers
  • Wastewater flows into a _________ once it is released into a floor drain.
    5·1 answer
  • I need answers for this sheet please.
    15·1 answer
  • What are some advantages of generating electrical energy from tides instead of from fossil fuels
    13·1 answer
  • A motorist enters a freeway at 25 mi/h and accelerates uniformly to 65 mi/h. From the odometer in the car, the motorist knows th
    14·1 answer
  • I wuv little space :)
    8·1 answer
  • Please look at the attachments and help me with these questions
    7·1 answer
  • Technician A that shielding gas nozzles may have different shapes. Technician B says that gelding gas nozzles is attached to the
    8·1 answer
  • E) What are the major jobs of a nurse?<br><br>​
    14·1 answer
  • How could angela use the puzzle to model semiconductors? as an n-type semiconductor with the pegs representing electrons and the
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!