1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirza4 [7]
3 years ago
11

When plotting a single AC cycle beginning at zero degrees and moving forward in time the cycles negative peak occurs at

Engineering
1 answer:
Lana71 [14]3 years ago
4 0

Answer:A 270 degrees

Explanation:

You might be interested in
Entropy change is evaluated using Eq. 6.2a based on an internally reversible process. Can the entropy change between two states
Vadim26 [7]

Answer:

YES

Explanation:

Entropy is an extensive property of the system entropy change that value of entropy change can be determined for any process between the states whether reversible or not. i have attached the formula to calculate entropy change which is independent of whether the system is reversible or not and can be determined for any process.

4 0
3 years ago
Using the results of the Arrhenius analysis (Ea=93.1kJ/molEa=93.1kJ/mol and A=4.36×1011M⋅s−1A=4.36×1011M⋅s−1), predict the rate
uysha [10]

Answer:

k = 4.21 * 10⁻³(L/(mol.s))

Explanation:

We know that

k = Ae^{-E/RT} ------------------- euqation (1)

K= rate constant;

A = frequency factor = 4.36 10^11 M⁻¹s⁻¹;

E = activation energy = 93.1kJ/mol;

R= ideal gas constant = 8.314 J/mol.K;

T= temperature = 332 K;

Put values in equation 1.

k = 4.36*10¹¹(M⁻¹s⁻¹)e^{[(-93.1*10^3)(J/mol)]/[(8.314)(J/mol.K)(332K)}

k = 4.2154 * 10⁻³(M⁻¹s⁻¹)

here M =mol/L

k = 4.21 * 10⁻³((mol/L)⁻¹s⁻¹)

 or

k = 4.21 * 10⁻³((L/mol)s⁻¹)

or

k = 4.21 * 10⁻³(L/(mol.s))

3 0
3 years ago
The Energy Losses Associated with Valves and Fittings: a)- are generally associated with a K factor b)- are generally associated
madam [21]

Answer:

a)Are generally associated with factor.

Explanation:

We know that losses are two types

1.Major loss  :Due to friction of pipe surface

2.Minor loss  :Due to change in the direction of flow

As we know that when any hindrance is produced during the flow of fluid then it leads to generate the energy losses.If flow is along uniform diameter pipe then there will not be any loss but if any valve and fitting placed is the path of fluid flow due to this direction of fluid flow changes and  it produce losses in the energy.

Lot' of experimental data tell us that loss in the energy due to valve and fitting are generally associated with K factor.These losses are given as

Losses=K\dfrac{V^2}{2g}

8 0
3 years ago
Consider a cubic workpiece of rigid perfect plastic material with side length lo. The cube is deformed plastically to the shape
Taya2010 [7]

Answer:  ε₁+ε₂+ε₃ = 0

Explanation: Considering the initial and final volume to be constant which gives rise to the relation:-

                         l₀l₀l₀=l₁l₂l₃

                        \frac{lo*lo*lo}{l1*l2*l3}=1.0

                      taking natural log on both sides

                              ln(\frac{(lo*lo*lo)}{l1*l2*l3})=ln(1)

Considering the logarithmic Laws of division and multiplication :

                                ln(AB) = ln(A)+ln(B)

                                ln(A/B) = ln(A)-ln(B)

                           ln(\frac{(l1)}{lo})*ln(\frac{(l2)}{lo})*ln(\frac{(l3)}{lo}) = 0

Use the image attached to see the definition of true strain defined as

                         ln(l1/1o)= ε₁

which then proves that ε₁+ε₂+ε₃ = 0

8 0
3 years ago
A water pump delivers 3 hp of shaft power when operating. If the pressure differential between the outlet and the inlet of the p
Natali [406]

Answer:

Mechanical Efficiency =  83.51%

Explanation:

Given Data:

Pressure difference = ΔP=1.2 Psi

Flow rate = V=8ft^3/s\\

Power of Pump = 3 hp

Required:

Mechanical Efficiency

Solution:

We will first bring the change the units of given data into SI units.

P=1.2*6.895 = 8.274KPa\\V=8*0.00283=0.226 m^3/s\\P=3*0.746=2.238KW

Now we will find the change in energy.

Since it is mentioned in the statement that change in elevation (potential energy) and change in velocity (Kinetic Energy) are negligible.

Thus change in energy is

=(Mass * change in P)/density\\= \frac{M*P}{p}\\\\

As we know that Mass = Volume x density

substituting the value

Energy = Volume * density x ΔP / density

Change in energy = Volumetric flow x ΔP

Change in energy = 0.226 x 8.274 = 1.869 KW

Now mechanical efficiency = change in energy / work done by shaft

Efficiency = 1.869 / 2.238

Efficiency = 0.8351 = 83.51%

5 0
3 years ago
Other questions:
  • Soap is a very interesting chemical. We even discussed it on the discussion board. How does it work, exactly?
    7·1 answer
  • A 55-μF capacitor has energy ω (t) = 10 cos2 377t J and consider a positive v(t). Determine the current through the capacitor.
    12·1 answer
  • A circular ceramic plate that can be modeled as a blackbody is being heated by an electrical heater. The plate is 30 cm in diame
    15·1 answer
  • james wants to qualify for icp are and licensure. Which degree would be required in order to qualify for a two year master of ar
    15·1 answer
  • Which type of load is not resisted by a pinned joint? A) Moment B) Shear C) Axial D) Compression
    7·1 answer
  • An open vat in a food processing plant contains 500 L of water at 20°C and atmospheric pressure. If the water is heated to 80°C,
    9·1 answer
  • A reservoir is 1 km wide and 10 km long and has an average depth of 100m. Every hour, 0.1% of the reservoir's volume drops throu
    5·1 answer
  • Why do some ladders have a white tip or reflective tape attached to the tip?
    14·1 answer
  • A cantilever beam AB of length L has fixed support at A and spring support at B.
    11·1 answer
  • A thin aluminum sheet is placed between two very large parallel plates that are maintained at uniform temperatures T1 = 900 K, T
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!