Answer:

Explanation:
From the question we are told that:
Temperature of silicon 
Electron concentration 
Electron diffusion coefficient is
Electron mobility is 
Electron current density 
Generally the equation for the semiconductor is mathematically given by

Therefore



Answer:
C₁₀ = 6.3 KN
Explanation:
The catalog rating of a bearing can be found by using the following formula:
C₁₀ = F [Ln/L₀n₀]^1/3
where,
C₁₀ = Catalog Rating = ?
F = Design Load = 2.75 KN
L = Design Life = 1800 rev/min
n = No. of Hours Desired = 10000 h
L₀ = Rating Life = 500 rev/min
n₀ = No. of Hours Rated = 3000 h
Therefore,
C₁₀ = [2.75 KN][(1800 rev/min)(10000 h)/(500 rev/min)(3000 h)]^1/3
C₁₀ = (2.75 KN)(2.289)
<u>C₁₀ = 6.3 KN</u>
Answer:
It would take approximately 305 s to go to 99% completion
Explanation:
Given that:
y = 50% = 0.5
n = 1.7
t = 100 s
We need to first find the parameter k from the equation below.

taking the natural logarithm of both sides:

Substituting values:

Also
![t^n=-\frac{ln(1-y)}{k}\\t=\sqrt[n]{-\frac{ln(1-y)}{k}}](https://tex.z-dn.net/?f=t%5En%3D-%5Cfrac%7Bln%281-y%29%7D%7Bk%7D%5C%5Ct%3D%5Csqrt%5Bn%5D%7B-%5Cfrac%7Bln%281-y%29%7D%7Bk%7D%7D)
Substituting values and y = 99% = 0.99
![t=\sqrt[n]{-\frac{ln(1-y)}{k}}=\sqrt[1.7]{-\frac{ln(1-0.99)}{2.76*10^{-4}}}=304.6s](https://tex.z-dn.net/?f=t%3D%5Csqrt%5Bn%5D%7B-%5Cfrac%7Bln%281-y%29%7D%7Bk%7D%7D%3D%5Csqrt%5B1.7%5D%7B-%5Cfrac%7Bln%281-0.99%29%7D%7B2.76%2A10%5E%7B-4%7D%7D%7D%3D304.6s)
∴ t ≅ 305 s
It would take approximately 305 s to go to 99% completion