1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
EleoNora [17]
3 years ago
7

cThe Mars Rover Spirit got stuck in the Martian sand. The wheels kept slipping. Attempts to free it were futile. Discuss the typ

e of actuator in this case. Can you suggest any improvements in the actuator that would have prevented this unfortunate breakdown
Engineering
1 answer:
IgorC [24]3 years ago
7 0

Answer:

Improved/ advanced types of Actuators include servo systems, create a large range of actuator motion in response to the changing needs of the operational environment or process.

Actuators are local or automated suppliers of working motion.

Hydraulic and air cylinders can be classified as single-acting cylinders, meaning that the energy source result in movement in one direction and a spring is used for the other direction.

Explanation:

An actuator control system is referred to as any electronic, electrical, or electromechanical system often used to activate an actuator, control the direction as well as extent and duration of its output. Actuator control systems could take the form of extremely simple, manually-operated, start-and-stop stations, either sophisticated or programmable computer systems. The more improved/ advanced types include servo systems that produce a large range of actuator motion in response to the changing needs of the operational environment or process. This type of actuator control system uses an interface arrangement that assimilates feedback from the process or mechanism and adjusts the actuator in the right way. Most actuator systems will include at least a set of travel limits that prevent the actuator destroying itself or the secondary mechanism.

Actuators are local or automated suppliers of working motion. They are used to changes, adjust, or move a secondary mechanism, where a physical operator cannot intervene directly. They are denoted by a large range of varying types using electrical and electromagnetic, hydraulic, or pneumatic power sources to create linear or rotary outputs. One element they all have in common is the actuator control system used to start, stop, and adjust the range, speed, and duration of the working motion.

Actuators can produce a linear motion, rotary motion or oscillatory motion which means they can create motion in one direction, in a circular motion or in opposite directions at regular intervals. Hydraulic and air cylinders can be classified as single-acting cylinders, meaning that the energy source result in movement in one direction and a spring is used for the other direction.

You might be interested in
A right triangle has a base of 12 inches and a height of 30 inches, what is the centroid of the triangle?​
aliina [53]

Answer:

the correct answer is 42

4 0
3 years ago
Assume that the water temperature is 10°C and the depth of the settling tank is 3.0 m (9.80 ft). Calculate the theoretical settl
Lelu [443]

Explanation:

See attached file

6 0
3 years ago
Which of the following uses pressure and flow to transmit power from one location to another?
lord [1]

Answer:

fluid power

Explanation:

fluids commonly used in fluid power are Oil, Water, Air, CO², and Nitrogen gas, fluid power is commonly confused with hydraulic power, which only uses liquids, fluid power uses either liquids or gases

5 0
2 years ago
Ben leads a team of a few engineers at a robotics firm. A couple of them would like to improve their skills by taking additional
Anit [1.1K]

Answer:

i dont know

Explanation:

4 0
2 years ago
A pipe of 0.3 m outer diameter at a temperature of 160°C is insulated with a material having a thermal conductivity of k = 0.055
Alekssandra [29.7K]

Answer:

Q=0.95 W/m

Explanation:

Given that

Outer diameter = 0.3 m

Thermal conductivity of material

K= 0.055(1+2.8\times 10^{-3}T)\frac{W}{mK}

So the mean conductivity

K_m=0.055\left ( 1+2.8\times 10^{-3}T_m \right )

T_m=\dfrac{160+273+40+273}{2}

T_m=373 K

K_m=0.055\left ( 1+2.8\times 10^{-3}\times 373 \right )

K_m=0.112 \frac{W}{mK}

So heat conduction through cylinder

Q=kA\dfrac{\Delta T}{L}

Q=0.112\times \pi \times 0.15^2\times 120

Q=0.95 W/m

4 0
3 years ago
Other questions:
  • When designing a car that runs on wind or Air car . can you tell me the details for the following points Compressed Air Engine:
    8·1 answer
  • Suppose that a wireless link layer using a CSMA-like protocol backs off 1ms on average. A packet’s link and physical layer heade
    5·1 answer
  • In the 1960s through 1980s, a medical filter manufacturer in Ann Arbor discharged 1,4-dioxane (an industrial solvent) directly i
    10·1 answer
  • The solid cylinders AB and BC are bonded together at B and are attached to fixed supports at A and C. The modulus of rigidity is
    6·1 answer
  • A solid steel shaft has to transmit 100 kW at 160 RPM. Taking allowable shear stress at 70 Mpa, find the suitable diameter of th
    15·1 answer
  • REVIEW QUESTIONS
    11·1 answer
  • A simple Rankine cycle coal-fired power plant has given states identified in the following table. The power plant produces 2.1 b
    9·1 answer
  • melinda is using a rectangular brass bar in a sculpture she is creating. the brass bar has a length that is 4 more than 3 times
    11·2 answers
  • What is 203593^54/38n^7
    6·1 answer
  • The team needs to choose a primary view for the part drawing. Three team members make suggestions:
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!