1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
g100num [7]
3 years ago
10

Choose the fragment that best completes the following sentence. The more money in an account earning compound interest,

Mathematics
1 answer:
lord [1]3 years ago
8 0

Answer:

mark me brainliest

Step-by-step explanation: the answer is ####### good luck !!! :D i have done this before dont worry lol

You might be interested in
The defeintion of equivalent ratios
Hitman42 [59]
Tow ratios that have the same value when simplified.


Hope this helps!!;)
8 0
3 years ago
A builder makes drainpipes that drop 1 cm over a
LUCKY_DIMON [66]

Answer:

700.4 cm

Step-by-step explanation:

This involves two similar triangles.

Both triangles are right triangles.

One has legs measuring 1 cm and 30 cm. We can find the hypotenuse by using the Pythagorean theorem.

(1 cm)^2 + (30 cm)^2 = c^2

c^2 = 901 cm^2

c = sqrt(901) cm

The second triangle has one leg with length 700 cm. This leg corresponds to the 30-cm leg in the other triangle. Since the triangles are similar, we can use a proportion to find the hypotenuse of the second triangle.

(30 cm)/(700 cm) = [sqrt(901) cm]/x

3/70 = sqrt(901) cm/x

3x = 70 * sqrt(901) cm

x = 70 * sqrt(901) cm/3

x = 700.4 cm

Answer: 700.4 cm

8 0
3 years ago
Read 2 more answers
Helpppppppppppppppppppppppppppppppppppppppppppp
Sphinxa [80]

Answer:

lets talk first

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Using the numbers 1 through 9 only one time what is the highest​
Aleksandr-060686 [28]
If you are asking for the highest number possible to be created form 1 through 9 while using each number once then the highest number is 98
8 0
4 years ago
Please help me to prove this!​
Ymorist [56]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π              → A + B = π - C

                                              → B + C = π - A

                                              → C + A = π - B

                                              → C = π - (B +  C)

Use Sum to Product Identity:  cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]

Use the Sum/Difference Identity: cos (A - B) = cos A · cos B + sin A · sin B

Use the Double Angle Identity: sin 2A = 2 sin A · cos A

Use the Cofunction Identity: cos (π/2 - A) = sin A

<u>Proof LHS → Middle:</u>

\text{LHS:}\qquad \qquad \cos \bigg(\dfrac{A}{2}\bigg)+\cos \bigg(\dfrac{B}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Sum to Product:}\qquad 2\cos \bigg(\dfrac{\frac{A}{2}+\frac{B}{2}}{2}\bigg)\cdot \cos \bigg(\dfrac{\frac{A}{2}-\frac{B}{2}}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)\\\\\\.\qquad \qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Given:}\qquad \quad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi -(A+B)}{2}\bigg)

\text{Sum/Difference:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{2}\bigg)

\text{Double Angle:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{2(A+B)}{2(2)}\bigg)\\\\\\.\qquad \qquad  \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+2\sin \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)

\text{Factor:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg]

\text{Cofunction:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi}{2}-\dfrac{A+B}{4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{2\pi-(A+B)}{4}\bigg)\bigg]

\text{Sum to Product:}\ 2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[2 \cos \bigg(\dfrac{2\pi-2B}{2\cdot 4}\bigg)\cdot \cos \bigg(\dfrac{2A-2\pi}{2\cdot 4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)

\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{\pi -C}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)

LHS = Middle \checkmark

<u>Proof Middle → RHS:</u>

\text{Middle:}\qquad 4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)\\\\\\\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)

Middle = RHS \checkmark

3 0
3 years ago
Other questions:
  • Plz help..................refresh page before u answer
    11·1 answer
  • The sum of 2 rational numbers is 5/2. if one of the number is -7/3. then find the other number.
    5·2 answers
  • NEED HELP ASAP<br> Solve the equation or inequality for the unknown number. Show your work.
    8·1 answer
  • How do u simplify I dont understand it or know how to do it
    9·1 answer
  • 3. (2.56 x 10^6) x (3.56 x 10^2) =
    7·2 answers
  • which of the following is the correct value of (0.22)•(0.4)? show your reasoning. A. 8.8 B. 0.88 C. 0.088 D. 0.0088​
    8·2 answers
  • PLSS HELP THE TEACHER IS ASKING FOR MY ANSWERS CUZ I WAS SUPPOSED TO DO IT AND I NEVER WAS PREPARED PLSSS HELP IM NEXT
    14·1 answer
  • | result | blue | red | yellow | orange |
    11·1 answer
  • 3(q-7)=273(q−7)=27 find q
    5·1 answer
  • Plz help i dont understand and if u can help i will mark brainliest!!​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!