Answer:
The radius of a circumcircle of an equilateral triangle is equal to (a / √3), where ‘a’ is the length of the side of equilateral triangle.
Circle Radius = 16 / sq root (3)
Circle Radius = 9.237604307
Circle Area = PI * radius ^ 2
Circle Area = PI * 85.3333333333
Circle Area = 268.083
Equilateral Triangle area = side^2 * sq root (3) / 4
Equilateral Triangle area = 16^2 * 0.4330127019
Equilateral Triangle area = 110.85
Shaded region = 268.083 - 110.85
Shaded region = 157.233
Step-by-step explanation:
2x+8y
2x+8times2
2x+16
18x
Your final answer is 18x!
Answer:
![\huge\boxed{\sf f = -4}](https://tex.z-dn.net/?f=%5Chuge%5Cboxed%7B%5Csf%20f%20%3D%20-4%7D)
Step-by-step explanation:
![\sf -5f = 20\\\\Dividing\ both\ sides\ by\ -5\\\\\frac{-5f}{-5} = \frac{20}{-5} \\\\f = -4](https://tex.z-dn.net/?f=%5Csf%20-5f%20%3D%2020%5C%5C%5C%5CDividing%5C%20both%5C%20sides%5C%20by%5C%20-5%5C%5C%5C%5C%5Cfrac%7B-5f%7D%7B-5%7D%20%3D%20%5Cfrac%7B20%7D%7B-5%7D%20%5C%5C%5C%5Cf%20%3D%20-4)
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h2>~AnonymousHelper1807</h2>
So... get the like-terms and add/subtract
![7x^2-13x-2+27x^2-6x-1 \\ \quad \\ \textit{add/subtract the like-terms} \\ \quad \\ \boxed{7x^2+27x^2}\quad \boxed{-13x-6x}\quad \boxed{-1-2}](https://tex.z-dn.net/?f=7x%5E2-13x-2%2B27x%5E2-6x-1%0A%5C%5C%20%5Cquad%20%5C%5C%0A%5Ctextit%7Badd%2Fsubtract%20the%20like-terms%7D%0A%5C%5C%20%5Cquad%20%5C%5C%0A%5Cboxed%7B7x%5E2%2B27x%5E2%7D%5Cquad%20%5Cboxed%7B-13x-6x%7D%5Cquad%20%5Cboxed%7B-1-2%7D)
see what that gives you