The answer would be A. When using Cramer's Rule to solve a system of equations, if the determinant of the coefficient matrix equals zero and neither numerator determinant is zero, then the system has infinite solutions. It would be hard finding this answer when we use the Cramer's Rule so instead we use the Gauss Elimination. Considering the equations:
x + y = 3 and <span>2x + 2y = 6
Determinant of the equations are </span>
<span>| 1 1 | </span>
<span>| 2 2 | = 0
</span>
the numerator determinants would be
<span>| 3 1 | . .| 1 3 | </span>
<span>| 6 2 | = | 2 6 | = 0.
Executing Gauss Elimination, any two numbers, whose sum is 3, would satisfy the given system. F</span>or instance (3, 0), <span>(2, 1) and (4, -1). Therefore, it would have infinitely many solutions. </span>
]Eigenvectors are found by the equation

implying that

. We then can write:
And:
Gives us the characteristic polynomial:

So, solving for each eigenvector subspace:
![\left [ \begin{array}{cc} 4 & 2 \\ 5 & 1 \end{array} \right ] \left [ \begin{array}{c} x \\ y \end{array} \right ] = \left [ \begin{array}{c} -x \\ -y \end{array} \right ]](https://tex.z-dn.net/?f=%5Cleft%20%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%204%20%26%202%20%5C%5C%205%20%26%201%20%5Cend%7Barray%7D%20%5Cright%20%5D%20%5Cleft%20%5B%20%5Cbegin%7Barray%7D%7Bc%7D%20x%20%5C%5C%20y%20%5Cend%7Barray%7D%20%5Cright%20%5D%20%3D%20%5Cleft%20%5B%20%5Cbegin%7Barray%7D%7Bc%7D%20-x%20%5C%5C%20-y%20%5Cend%7Barray%7D%20%5Cright%20%5D%20)
Gives us the system of equations:
Producing the subspace along the line

We can see then that 3 is the answer.
Answer:81.31
Step-by-step explanation:
Answer:it is confusing
Step-by-step explanation:
If you know the whole price for 2.4 gallons, divide the whole price by 2.4 to get the cost for one, because when you multiply the cost for 1 by 2.4, you get the total.
7.56/2.4 = 3.15,
p= 3.15