The answer is he needs 7.5 pizzas but you can’t do that so you round up to 8 pizzas
The frequency is 1 /period = 1 / [ 2 pi ]
Answer:
y=0
Step-by-step explanation:
bc if you graph y=0 its parallel to y=4
Usando el teorema de altura El teorema de altura relaciona la altura (h) de un triángulo rectángulo (ver figura) y los catetos de dos triángulos que son semejantes al anterior ABC, al trazar la altura (h) sobre la hipotenusa. De manera que e<span>n todo </span>triángulo rectángulo, la altura (h<span>) relativa a la </span>hipotenusa<span> es la </span>media geométrica<span> de las dos proyecciones de los </span>catetos<span> sobre la </span>hipotenusa<span> (</span>n<span> y </span>m<span>). Es decir, se cumple que:
</span>

Dado que el problema establece <span>construir un segmento cuya longitud sea media proporcional entre dos segmentos de 4 y 9 cm, entonces, digamos que n = 4cm y m = 9cm tenmos que:
</span>

De donde:
¿Cómo se podria construir si los segmentos son de a cm y b cm?
Si los segmentos son de a y b cm entonces a y b son parámetros que pueden tomar cualquier valor positivo siempre que se cumpla que:

Answer:



Step-by-step explanation:
We know that:
Only employees are hired during the first 3 days of the week with equal probability.
2 employees are selected at random.
So:
A. The probability that an employee has been hired on a Monday is:
.
If we call P(A) the probability that 2 employees have been hired on a Monday, then:

B. We now look for the probability that two selected employees have been hired on the same day of the week.
The probability that both are hired on a Monday, for example, we know is
. We also know that the probability of being hired on a Monday is equal to the probability of being hired on a Tuesday or on a Wednesday. But if both were hired on the same day, then it could be a Monday, a Tuesday or a Wednesday.
So
.
C. If the probability that two people have been hired on a specific day of the week is
, then the probability that 7 people have been hired on the same day is:

D. The probability is
. This number is quite close to zero. Therefore it is an unlikely bastate event.