To work it out, you divide 240 by 100 to work out 1% of it, then multiply that by 95 to work out 95% of it. So
(240/100) * 95 = 228mL
<u>Given:</u>
Moles of He = 15
Moles of N2 = 5
Pressure (P) = 1.01 atm
Temperature (T) = 300 K
<u>To determine:</u>
The volume (V) of the balloon
<u>Explanation:</u>
From the ideal gas law:
PV = nRT
where P = pressure of the gas
V = volume
n = number of moles of the gas
T = temperature
R = gas constant = 0.0821 L-atm/mol-K
In this case we have:-
n(total) = 15 + 5 = 20 moles
P = 1.01 atm and T = 300K
V = nRT/P = 20 moles * 0.0821 L-atm/mol-K * 300 K/1.01 atm = 487.7 L
Ans: Volume of the balloon is around 488 L
2 SO₃ --> 2 SO₂ + O₂
I 12 0 0
C -2x +2x +x
---------------------------------------------
E 12-2x 2x x
Since the moles of SO₂ at equilibrium is 3 mol, 2x = 3. Then, x = 1.5 mol. So, the amounts at equilibrium is:
SO₃: 12 - 2(1.5) = 9
SO₂: 2(1.5) = 3
O₂: 1.5
The formula for K basing on the stoichiometric reaction is:
K = [SO₂]²[O₂]/[SO₃]²
where the unit used is conc in mol/L.
K = [3 mol/3 L]²[1.5 mol/3 L]/[9 mol/3 L]²
<em>K = 0.0556</em>
929282827280182292848474748393027373882
Answer:
KOH contains only one K, so a mole of KOH contains one mole of K. How many atoms of K are in 1 mole of KOH? There are 6.022 × 1023 atoms of potassium in every mole of potassium. Since one mole of KOH contains one mole of K, the answer is 6.022×1023 atoms of K.
Explanation: