Answer:
N = 2000 drops approx with 1 cm diameter each
Explanation:
Let the diameter of one drop is 1 cm
so volume of one drop is given by

now we have


now in 1L of liquid let say N drops are there
so we have

now we have


so it will have approx 2000 drops in it with diameter 1 cm each drop
Answer:
C
Explanation:
There is a decrease in temperature and daylight and plants produce less food.
Please mark brainliest!!
*Quick Reminder: If this is an assignment from homeschool/school, please don't forget to rephrase/summarize/reference from this answer. Keep in mind no plagiarism is allowed in school. And please don't plagiarize this answer. Thanks!*
Answer:
D. has no overall force acting on it.
Explanation:
Why?
Because in a straight line at the constant speed means the car moving in the same velocity, which is not acceleration neither deceleration, and it cannot be on a downhill slope. So the correct answer is
<h3>→ D. has no overall force acting on it.</h3>
The calculated coefficient of kinetic friction is 0.33125.'
The rate of kinetic friction the friction force to normal force ratio experienced by a body moving on a dry, uneven surface is known as k. The friction coefficient is the ratio of the normal force pressing two surfaces together to the frictional force preventing motion between them. Typically, it is represented by the Greek letter mu (). In terms of math, is equal to F/N, where F stands for frictional force and N for normal force.
given mass of the block=10 kg
spring constant k= 2250 Nm
now according to principal of conservation of energy we observe,
the energy possessed by the block initially is reduced by the friction between the points B and C and rest is used up in work done by the spring.
mgh= μ (mgl) +1/2 kx²
10 x 10 x 3= μ(600) +(1125) (0.09)
μ(600) =300 - 101.25
μ = 198.75÷600
μ =0.33125
The complete question is- A 10.0−kg block is released from rest at point A in Fig The track is frictionless except for the portion between point B and C, which has a length of 6.00m the block travels down the track, hits a spring of force constant 2250N/m, and compresses the spring 0.300m form its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between point Band (C)
Learn more about kinetic friction here-
brainly.com/question/13754413
#SPJ4