The equilibrium vapour pressure is typically the pressure exerted by a liquid .... it is A FUNCTION of temperature...
Explanation:
By way of example, chemists and physicists habitually use
P
saturated vapour pressure
...where
P
SVP
is the vapour pressure exerted by liquid water. At
100
∘
C
,
P
SVP
=
1
⋅
a
t
m
. Why?
Well, because this is the normal boiling point of water: i.e. the conditions of pressure (i.e. here
1
⋅
a
t
m
) and temperature, here
100
∘
C
, at which the VAPOUR PRESSURE of the liquid is ONE ATMOSPHERE...and bubbles of vapour form directly in the liquid. As an undergraduate you should commit this definition, or your text definition, to memory...
At lower temperatures, water exerts a much lower vapour pressure...but these should often be used in calculations...especially when a gas is collected by water displacement. Tables of
saturated vapour pressure
are available.
Answer:
I needed to use good precision in my measurement for my chemistry lab
Explanation:
What is the name of CuC2H3O2?
The answer is Copper (I) Acetate. (:
Answer:
The catalyzed reaction will take 2.85 seconds to occur.
Explanation:
The activation energy of a reaction is given by:

For the reaction without catalyst we have:
(1)
And for the reaction with the catalyst:
(2)
Assuming that frequency factor (A) and the temperature (T) are constant, by dividing equation (1) with equation (2) we have:

Since the reaction rate is related to the time as follow:
![k = \frac{\Delta [R]}{t}](https://tex.z-dn.net/?f=%20k%20%3D%20%5Cfrac%7B%5CDelta%20%5BR%5D%7D%7Bt%7D%20)
And assuming that the initial concentrations ([R]) are the same, we have:
![\frac{k_{1}}{k_{2}} = \frac{\Delta [R]/t_{1}}{\Delta [R]/t_{2}}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bk_%7B1%7D%7D%7Bk_%7B2%7D%7D%20%3D%20%5Cfrac%7B%5CDelta%20%5BR%5D%2Ft_%7B1%7D%7D%7B%5CDelta%20%5BR%5D%2Ft_%7B2%7D%7D%20)


Therefore, the catalyzed reaction will take 2.85 seconds to occur.
I hope it helps you!