Answer:
London dispersion forces
Explanation:
There are different forces of attraction that helps to hold atoms or Molecules of a particular substance together. Some of the forces of attraction are ionic/ electrovalent bond, covalent bond, vander waals forces of attraction and so on.
Under the vander waals forces of attraction we have what is known as the London dispersion forces. This force of attraction is a very weak and it is commonly found in the atoms of noble gases.
The intermolecular force of attraction in which we are talking about that is london dispersion forces is formed as a result of the formation of non-polar dipoles which are not permanent.
Answer:
B
Explanation:
Having the same electronegativity means that the both elements will form a nonpolar bond. The shared electrons of the bind will be found equidistant from the nucleus of the two atoms because none has an unusual ability to attract the electrons of a bond towards itself.
Answer:
3Na2SO4
Explanation:
3Na2SO4
# of molecules: 3 moles of Na2SO4 or 3 × 6.22 × 10^23 molecules.
# of elements: 3 elements l
Name of element: = Sodium, S = Sulphur, O = Oxygen
# of atoms: Na = 6 atoms, S= 3, O= 12
Total # of atoms: 21
The #3 is a Coefficient.
Please mark branliest if you are satisfied. Thanking in anticipation.
1. True
2. True
3. False
4. True
Answer:
d) cut the large sized Cu solid into smaller sized pieces
Explanation:
The aim of the question is to select the right condition for that would increases the rate of the reaction.
a) use a large sized piece of the solid Cu
This option is wrong. Reducing the surface area decreases the reaction rate.
b) lower the initial temperature below 25 °C for the liquid reactant, HNO3
Hugher temperatures leads to faster reactions hence this option is wrong.
c) use a 0.5 M HNO3 instead of 2.0 M HNO3
Higher concentration leads to increased rate of reaction. Hence this option is wrong.
d) cut the large sized Cu solid into smaller sized pieces
This leads to an increased surface area of the reactants, which leads to an increased rate of the reaction. This is the correct option.