Answer:
D wavelength
Explanation:
The different wavelengths determine the color.
Gravitational potential energy can be calculated using the formula <span>PE = m × g × h, where g is the gravitational acceleration and is constant hence the energy is dependent directly to mass and the height of the object. Hence more PE is registered when the object is heavier and/or at greater initial height. </span>
Explanation:
Seismic refraction is the bending of the seismic waves as they pass geological layers of the earth due to different densities. This is especially true for Primary waves because they can pass through all the layers of the earth both liquid and solid.
Seismic reflectivity is the bouncing back of seismic waves at a boundary of geological layers due to different densities or subsurface formation. This is especially true for secondary waves that are unable to pass through liquid layers of the earth like the outer core and mantle. When they reach the boundary of these layers they bounce back towards the earth's surface.
These properties of P and S waves are used to ‘auscultate’ the epicenter of an earthquake by triangulation.
Learn More:
For more on Seismic Reflection and Seismic Refraction check out;
brainly.com/question/13502364
#LearnWithBrainly
Answer:

Explanation:
v = Orbital speed = 130 km/s
d = Diameter = 16 ly
r = Radius = 
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²

As the centripetal force balances the gravitational energy we have the following relation

Mass of the the massive object at the center of the Milky Way galaxy is 
Given Information:
slope angle = θ = 30°
spring constant = k = 30 N/m
compressed length = x = 10 cm = 0.10 m
mass of ice cube = m = 63 g = 0.063 kg
Required Information:
distance traveled by ice cube = d = ?
Answer:
distance traveled by ice cube = 0.48 m
Explanation:
Using the the principle of conversation of energy, the following relation holds true for this case,
mgh = 1/2*kx²
h = 1/2*kx²/mg
Where h is the height of the slope, m is the mass of ice cube, k is the spring constant and x is the compressed length o the spring and g is gravitational acceleration.
h = 1/2*kx²/mg
h = 1/2*30(0.1)²/0.063*9.8
h = 0.242 m
From trigonometry ratio,
sinθ = h/d
d = h/sinθ
d = 0.242/sin(30)
d = 0.48 m
Therefore, when the ice cube is released, it will travel a total distance 0.48 up the slope before reversing direction.