When designing tires for a car, an engineer must consider the materials that will be used to fabricate the tires ... both the suitability of the materials for the purpose, and their cost.
For example, the engineer should not design car tires to be made of glass or of silk, since these would not hold up well when driving on concrete roads, and they would need to be replaced too often.
For another example, he should not design car tires to be made of gold or polished diamond, since these would be beyond the price range of most car owners, and also, these tires would be very susceptible to being stolen by nefarious and dishonest individuals in the middle of the night.
.
I hope this answer is helpful. The question you posted is a very difficult one, because there are no answer choices listed, and also because the question has the mysterious unknown term "the following" in it.
momentum is the product of mass and velocity
Answer:
1: an elevator moving up to the 3rd floor (gathering potential energy)
2: all options here will increase the GPE
3: the last option
4: just before it hits the ground and has reached a speed of 28 meters per second
5: turning a different direction while moving the same speed
6:a jogger getting faster after spotting a mountain lion behind him on the trail
7: I didn’t watch the lesson
8: at the top of the swinging path, when you are still for a moment just before falling again
9: I d+o)n#t k#n0”w
10: same as 9 sor=ry
As the box compresses the spring, the spring performs
-1/2 (85 N/m) (0.065 m)² ≈ -0.18 J
of work on the box. By the work energy theorem, the total work performed on the box (which is done only by the spring since there's no friction) is equal to the change in the box's kinetic energy. At full compression, the box has zero instantaneous speed, so
<em>W</em> = ∆<em>K</em> ==> -0.18 J = 0 - 1/2 (2.5 kg) <em>v</em> ²
where <em>v</em> is the box's speed when it first comes into contact with the spring. Solve for <em>v</em> :
<em>v</em> ² ≈ 0.14 m²/s² ==> <em>v</em> ≈ 0.38 m/s