I think a reflected ray should be symmetrical so I believe your answer is 32 degrees
U = 0, initial vertical velocity
v = 60 mph = 88 ft/s
Ignore air resistance and take g = 32 ft/s².
It t = time to attain 60 mph, then
(88 ft/s) = (32 ft/s²)*(t s)
t = 88/32 = 2.75 s
Answer: 2.75 s
The potential energy of the car when it let go is 20,000 J.
The speed of the car at the bottom of the ramp is 20 m/s.
The given parameters;
- <em>mass of the car, m = 100 kg</em>
- <em>height of the car, h = 20 m</em>
<em />
The potential energy of the car is calculated as follows;
P.E = mgh
P.E = 100 x 10 x 20
P.E = 20,000 J
The speed of the car at the bottom of the ramp is calculated as follows;

Learn more here:brainly.com/question/18597080
Answer:
the spring constant k = 
the value for the damping constant 
Explanation:
From Hooke's Law

Thus; the spring constant k = 
The amplitude is decreasing 37% during one period of the motion


Therefore; the value for the damping constant 
B. 29 atomic number is the number of protons