Answer:
a) 166.4 s
b) (2.155 × 10⁷) s
Explanation:
15600 KWh for a year,
1 year consists of 365 × 24 hours = 8760 hours.
So, the power consumed in a year for an average household = (Energy/time)
= (15600/8760) = 1.781 KW = 1781 W
a) If the average rate of energy consumed by the house was instead diverted to lift a 1.80 × 10 3 kg car 16.8 m into the air, how long would it take
The power required for this lifting = (mgh/t)
m = 1800 kg
g = 9.8 m/s²
h = 16.8 m
t = ?
P = 1781 W
1781 = (1800×9.8×16.8)/t
t = (296,352/1781)
t = 166.4 s
b) how long would it take to lift a loaded Boeing 747 airplane, with a mass of 4.05 × 10 5 kg , to a cruising altitude of 9.67 km
The power required for this lifting = (mgh/t)
m = 405000 kg
g = 9.8 m/s²
h = 9.67 km = 9670 m
t = ?
P = 1781 W
1781 = (405000×9.8×9670)/t
t = (38,380,230,000/1781)
t = 21,549,820 s = (2.155 × 10⁷) s
Hope this Helps!!!
Answer:
Explanation:
The maximum efficient power plant will be the plant based on carnot cycle whose efficiency is given by the following formula
Efficiency = (T₁ - T₂) / T₁
T₁ is temperature of hot reservoir and T₂ is temperature of cold reservoir.
Putting the given values
efficiency of power plant = (35 - 5) / (273 + 35 )
= 30 / 308
= .097
= 9.7 %
Can’t see the pdf or video
Answer:
a) 0.32 m b) -2.4 m c) 1.08 m/s d) -4 m/s
Explanation:
a)
- As the x and y axes (as chosen) are perpendicular each other, the movements along these axes are independent each other.
- This means that we can use the kinematic equations for displacements along both axes.
- In the x direction, as the only initial velocity is in the south direction (-y axis), the skateboarder is at rest, so we can write:

- In the y-direction, as no acceleration is acting on the skateboarder, we can write the following displacement equation:

- For t = 0.6s, replacing by the givens, we get the position (displacement from the origin) on the x-axis, as follows:

b)
- From (2) we can get the position on the y-axis (displacement from the origin) as follows:

c)
- In the x- direction, we can find the component of the velocity along this direction, as follows:

- Replacing by the values, we have:

d)
- As the skateboarder moves along the y-axis at a constant speed equal to her initial velocity, we have:
vfy = voy = -4 m/s
Answer: 90 kgm/s
Explanation:
The momentum (linear momentum)
is given by the following equation:
Where:
is the mass of the skater
is the velocity
In this situation the skater has two values of momentum:
Initial momentum: 
Final momentum: 
Where:


So, if we want to calculate the difference in the magnitude of the skater's momentum, we have to write the following equation(assuming the mass of the skater remains constant):
Finally: