<h2>Right answer: It follows a curved path
</h2>
The movement of a projectile is a movement in two dimensions (forming a curved path: a parabola shape) with <u>constant acceleration.
</u>
<u>
</u>
A projectile is any body or object that is thrown or projected by means of some force and continues in motion by its own inertia. This means the only force that acts on it while in motion is <u>the acceleration of gravity</u> (in this case we are on Earth, so the gravity value is ).
Where gravity influences the <u>vertical movement</u> of the projectile, while <u>the horizontal movement</u> of the projectile is the result of the tendency of any object to remain in motion at a constant speed (according to Newton's 1st law of motion sometimes called Law of Inertia).
The other options are <u>incorrect</u> because are <u>false</u>:
-The forward motion negates air resistance: There is always at least a small percent of air resistance, as long as that movement is done on Earth.
-It has variable acceleration: In projectile motion acceleration is constant (gravity acceleration)
.
-It is unaffected by gravity: The only force that acts on the projectile is due gravity.
(a) The maximum height reached by the ball from the ground level is 75.87m
(b) The time taken for the ball to return to the elevator floor is 2.21 s
<u>The given parameters include:</u>
- constant velocity of the elevator, u₁ = 10 m/s
- initial velocity of the ball, u₂ = 20 m/s
- height of the boy above the elevator floor, h₁ = 2 m
- height of the elevator above the ground, h₂ = 28 m
To calculate:
(a) the maximum height of the projectile
total initial velocity of the projectile = 10 m/s + 20 m/s = 30 m/s (since the elevator is ascending at a constant speed)
at maximum height the final velocity of the projectile (ball), v = 0
Apply the following kinematic equation to determine the maximum height of the projectile.
The maximum height reached by the ball from the ground level (h) = height of the elevator from the ground level + height of he boy above the elevator + maximum height reached by elevator from the point of projection
h = h₁ + h₂ + h₃
h = 28 m + 2 m + 45.87 m
h = 75.87 m
(b) The time taken for the ball to return to the elevator floor
Final height of the ball above the elevator floor = 2 m + 45.87 m = 47.87 m
Apply the following kinematic equation to determine the time to return to the elevator floor.
To learn more about projectile calculations please visit: brainly.com/question/14083704
<span>The correct answer is C. divergent plate. That's because the plates diverged, that is, they separated. When they moved away from each other, the sea filled the hole. The opposite would be convergent if two plates moved towards each other and squished out a sea. Transform would be if it changed from one form to another.</span>
Answer: A is your best answer.
Explanation:
It should be A because the when the ball bounces on the ground the ground will give it force to bounce again but also it wont go as high as it first did. Hope this helps:))
10.67m/s²
32N
Explanation:
Given parameters:
Mass of the body = 3kg
velocity of the mass = 4m/s
radius of circle = 0.75m
Unknown:
centripetal acceleration = ?
centripetal force = ?
Solution:
The centripetal force is the force that keeps a radial body in its circular motion. It is directed inward:
Centripetal acceleration =
v is the velocity of the body
r is the radius of the circle
putting in the parameters:
Centripetal acceleration =
Centripetal acceleration = 10.67m/s²
Centripetal force = m
m is the mass
Centripetal force = mass x centripetal acceleration
= 3 x 10.67
= 32N
learn more:
Acceleration brainly.com/question/3820012
#learnwithBrainly