Answer:
Here's what I get
Explanation:
(a) Intermediates
The three structures below represent one contributor to the resonance-stabilized intermediate, in which the lone pair electrons on the heteroatom are participating (the + charge on the heteroatoms do not show up very well).
(b) Relative Stabilities
The relative stabilities decrease in the order shown.
N is more basic than O, so NH₂ is the best electron donating group (EDG) and will best stabilize the positive charge in the ring. However, the lone pair electrons on the N in acetanilide are also involved in resonance with the carbonyl group, so they are not as available for stabilization of the ring.
(c) Relative reactivities
The relative reactivities would be
C₆H₅-NH₂ > C₆H₅-OCH₃ > C₆H₅-NHCOCH₃
Answer:
25.45 Liters
Explanation:
Using Ideal Gas Law PV = nRT => V = nRT/P
V = (1mole)(0.08206Latm/molK)(298K)/(1atm) = 25.45 Liters
A covalent bond is your answer
Density= mass/ volume
So density = 99/10= 9.9g/cm^3
Hope this helps!! xx
A) sodium fluoride
B) rubidium oxide
C) boron trichloride
D) dihydrogen selenide
E) tetraphosphate hexoxide
F) iodine trichloride