Explanation:
Neutralization reaction is a type of chemical reaction in which an acid and a base react together to form a salt <u><em>and water</em> </u>as products.
Answer:
-0.129V
Explanation:
The change in free energy is obtained from the given parameters after which the value is now applied to obtain the cell potential in volts from the formukar shown in the solution below.
We can set up an ICE table for the reaction:
HClO H+ ClO-
Initial 0.0375 0 0
Change -x +x +x
Equilibrium 0.0375-x x x
We calculate [H+] from Ka:
Ka = 3.0x10^-8 = [H+][ClO-]/[HClO] = (x)(x)/(0.0375-x)
Approximating that x is negligible compared to 0.0375 simplifies the equation to
3.0x10^-8 = (x)(x)/0.0375
3.0x10^-8 = x2/0.0375
x2 = (3.0x10^-8)(0.0375) = 1.125x10^-9
x = sqrt(1.125x10^-9) = 0.0000335 = 3.35x10^-5 = [H+]
in which 0.0000335 is indeed negligible compared to 0.0375.
We can now calculate pH:
pH = -log [H+] = - log (3.35 x 10^-5) = 4.47
The volume of the dry gas at stp is calculated as follows
calculate the number on moles by use of PV =nRT where n is the number of moles
n is therefore = Pv/RT
P = 0.930 atm
R(gas contant= 0.0821 L.atm/k.mol
V= 93ml to liters = 93/1000= 0.093L
T= 10 + 273.15 = 283.15k
n= (0.930 x0.093) /(0.0821 x283.15) = 3. 72 x10^-3 moles
At STp 1 mole = 22.4L
what about 3.72 x10^-3 moles
by cross multiplication
volume = (3.72 x10^-3)mole x 22.4L/ 1 moles = 0.083 L or 83.3 Ml
Answer:
C₂ = 0.149 M
Explanation:
Given data:
Initial concentration = 0.407 M
Initial volume = 2.56 L
Final volume = 7.005 L
Final concentration = ?
Solution:
Formula:
C₁V₁ = C₂V₂
C₁ = Initial concentration
V₁ = Initial volume
C₂ = Final concentration
V₂ =Final volume
Now we will put the values.
0.407 M × 2.56 L = C₂ × 7.005 L
1.042 = C₂ × 7.005 L
C₂ = 1.042 M.L / 7.005 L
C₂ = 0.149 M