Answer:
View Image
Explanation:
You didn't provide me a picture of the opamp.
I'm gonna assume that this is an ideal opamp, therefore the input impedance can be assumed to be ∞ . This basically implies that...
- no current will go in the inverting(-) and noninverting(+) side of the opamp
- V₊ = V₋ , so whatever voltage is at the noninverting side will also be the voltage at the inverting side
Since no current is going into the + and - side of the opamp, then
i₁ = i₂
Since V₊ is connected to ground (0V) then V₋ must also be 0V.
V₊ = V₋ = 0
Use whatever method you want to solve for v_out and v_in then divide them. There's so many different ways of solving this circuit.
You didn't give me what the input voltage was so I can't give you the entire answer. I'll just give you the equations needed to plug in your values to get your answers.
Answer:
The answer is below
Explanation:
Let A represent the first switch, B represent the second switch and C represent the bulb. Also, let 0 mean turned off and 1 mean turned on. Since when both switches are in the same position, the light is off. This can be represented by the following truth table:
A B C (output)
0 0 0
0 1 1
1 0 1
1 1 0
The logic circuit can be represented by:
C = A'B + AB'
The output (bulb) is on if the switches are at different positions; if the switches are at the same position, the output (bulb) is off. This is an XOR gate. The gate is represented in the diagram attached below.
Answer:
maximum temperature = 1322 k
rate of heat addition = 212 kw
Explanation:
compression ratio = 17
cut off ratio = 1.3
power produced = 140 Kw
state of air at the beginning of the compression = 90 kPa and 578 c
Determine the maximum temperature of air
attached below is the detailed solution
Answer:
All of the above
Explanation:
firstly, a creep can be explained as the gradual deformation of a material over a time period. This occurs at a fixed load with the temperature the same or more than the recrystallization temperature.
Once the material gets loaded, the instantaneous creep would start off and it is close to electric strain. in the primary creep area, the rate of the strain falls as the material hardens. in the secondary area, a balance between the hardening and recrystallization occurs. The material would get to be fractured hen recrstallization happens. As temperature is raised the recrystallization gets to be more.
Answer:
33.56 ft^3/sec.in
Explanation:
Duration = 6 hours
drainage area = 185 mi^2
constant baseflow = 550 cfs
<u>Derive the unit hydrograph using the inverse procedure </u>
first step : calculate for the volume of direct runoff hydrograph using the details in table 2 attached below
Vdrh = sum of drh * duration
= 29700 * 6 hours ( 216000 secs )
= 641,520,000 ft^3.
next step : Calculate the volume of runoff in equivalent depth
Vdrh / Area = 641,520,000 / 185 mi^2
= 1.49 in
Finally derive the unit hydrograph
Unit of hydrograph = drh / volume of runoff in equivalent depth
= 50 ft^3 / 1.49 in = 33.56 ft^3/sec.in