The equations are based on the following assumptions
1) The bar is straight and of uniform section
2) The material of the bar is has uniform properties.
3) The only loading is the applied torque which is applied normal to the axis of the bar.
4) The bar is stressed within its elastic limit.
Nomenclature
T = torque (Nm)
l = length of bar (m)
J = Polar moment of inertia.(Circular Sections) ( m^4)
J' = Polar moment of inertia.(Non circluar sections) ( m^4 )
K = Factor replacing J for non-circular sections.( m^4)
r = radial distance of point from center of section (m)
ro = radius of section OD (m)
τ = shear stress (N/m^2)
G Modulus of rigidity (N/m^2)
θ = angle of twist (radians)
Answer:
See explaination
Explanation:
Lets first consider the term Isentropic efficiency. The isentropic efficiency of a compressor or pump is defined as the ratio of the work input to an isentropic process, to the work input to the actual process between the same inlet and exit pressures. IN practice, compressors are intentionally cooled to minimize the work input.
Please kindly check attachment for the step by step solution of the given problem.
Explanation:
She is passionate about architecture, typography, and black & white film ... Since moving to Texas, I've heard a lot of people say, "If you don't like ... Oc, 3.74, 56, 80 ... Not only does the weather have to be clear to pour the concrete, but it ... system that goes within the slab) is complete, any additional rain will
Answer:
the crown is false densty= 12556kg/m^3[/tex]
Explanation:
Hello! The first step to solve this problem is to find the mass of the crown, this is found using the weight of the crown in the air by means of the equation for the weight.
W=mg
W=weight(N)=31.4N
M=Mass
g=gravity=9.81m/S^2
solving for M
m=W/g

The second step is find the volume of crown remembering that when an object is weighed in the water the result is the subtraction between the weight of the object and the buoyant force of the water which is the product of the volume of the crown by gravity by density of water

Where
F=weight in water=28.9N
m=mass of crown=3.2kg
g=gravity=9.81m/S^2
α=density of water=1000kg/m^3
V= crown´s volume
solving for V

finally, we remember that the density is equal to the index between mass and volume

To determine the density of the crown without using the weight in the water and with a bucket we can use the following steps.
1.weigh the crown in the air and find the mass
2. put water in a cylindrical bucket and measure its height with a ruler.
3. Put the crown in the bucket and measure the new water level with a ruler.
4. Subtract the heights, and find the volume of a cylinder knowing the difference in heights and the diameter of the bucket, in order to determine the volume of the crown.
5. find density by dividing mass by volume
It is to be noted that it is impossible to find the Maclaurin Expansion for F(x) = cotx.
<h3>What is
Maclaurin Expansion?</h3>
The Maclaurin Expansion is a Taylor series that has been expanded around the reference point zero and has the formula f(x)=f(0)+f′. (0) 1! x+f″ (0) 2! x2+⋯+f[n](0)n!
<h3>
What is the explanation for the above?</h3>
as indicated above, the Maclaurin infinite series expansion is given as:
F(x)=f(0)+f′. (0) 1! x+f″ (0) 2! x2+⋯+f[n](0)n!
If F(0) = Cot 0
F(0) = ∝ = 1/0
This is not definitive,
Hence, it is impossible to find the Maclaurin infinite series expansion for F(x) = cotx.
Learn more about Maclaurin Expansion at;
brainly.com/question/7846182
#SPJ1