1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
serg [7]
3 years ago
9

How many buttons in an airbus a380 cockpit

Engineering
2 answers:
AlekseyPX3 years ago
5 0

Answer:

Explanation:

A330 has over 200

Ket [755]3 years ago
3 0

Explanation:

It depends on the cockpit. A glider for instance wouldn't have many buttons at all, whereas something like an Airbus A330 has over 200 buttons on the overhead panel, not including the circuit breakers. Generally the larger the aircraft, the more buttons it has.

You might be interested in
A plot of land is an irregular trangle with a base of 122 feet and a height of 47 feet what is the area of the plot?
Reika [66]

Answer:

150 is the area

Explanation:

3 0
3 years ago
If the old radiator is replaced with a new one that has longer tubes made of the same material and same thickness as those in th
Nookie1986 [14]

Answer: hello some parts of your question is missing attached below is the missing information

The radiator of a car is a type of heat exchanger. Hot fluid coming from the car engine, called the coolant, flows through aluminum radiator tubes of thickness d that release heat to the outside air by conduction. The average temperature gradient between the coolant and the outside air is about 130 K/mm . The term ΔT/d  is called the temperature gradient which is the temperature difference ΔT between coolant inside and the air outside per unit thickness of tube

answer : Total surface area = 3/2 * area of old radiator

Explanation:

we will use this relation

K = \frac{Qd }{A* change in T }

change in T =  ΔT  

therefore New Area  ( A ) = 3/2 * area of old radiator

Given that the thermal conductivity is the same in the new and old radiators

3 0
3 years ago
For a short time a rocket travels up and to the left at a constant speed of v = 650 m/s along the parabolic path y=600−35x2m, wh
julia-pushkina [17]

Answer:

Detailed working is shown

Explanation:

The attached file shows a detailed step by step calculation..

4 0
3 years ago
Using a forked rod, a 0.5-kg smooth peg P is forced to move along the vertical slotted path r = (0.5 θ) m, whereθ is in radians.
-BARSIC- [3]

Answer:

N_c = 3.03 N

F = 1.81 N

Explanation:

Given:

- The attachment missing from the question is given:

- The given expressions for the radial and θ direction of motion:

                                       r = 0.5*θ

                                       θ = 0.5*t^2              ...... (correction for the question)

- Mass of peg m = 0.5 kg

Find:

a) Determine the magnitude of the force of the rod on the peg at the instant t = 2 s.

b) Determine the magnitude of the normal force of the slot on the peg.

Solution:

- Determine the expressions for radial kinematics:

                                        dr/dt = 0.5*dθ/dt

                                        d^2r/dt^2 = 0.5*d^2θ/dt^2

- Similarly the expressions for θ direction kinematics:

                                        dθ/dt = t

                                        d^2θ/dt^2 = 1

- Evaluate each at time t = 2 s.

                                        θ = 0.5*t^2 = 0.5*2^2 = 2 rad -----> 114.59°

                                        r = 1 m , dr / dt = 1 m/s , d^2 r / dt^2 = 0.5 m/s^2

- Evaluate the angle ψ between radial and horizontal direction:

                                        tan Ψ = r / (dr/dθ) = 1 / 0.5

                                        Ψ = 63.43°

- Develop a free body diagram (attached) and the compute the radial and θ acceleration:

                                        a_r = d^2r / dt^2 - r * dθ/dt

                                        a_r = 0.5 - 1*(2)^2 = -3.5 m/s^2

                                        a_θ =  r * (d^2θ/dt^2) + 2 * (dr/dt) * (dθ/dt)

                                        a_θ = 1(1) + 2*(1)*(2) = 5 m/s^2

- Using Newton's Second Law of motion to construct equations in both radial and θ directions as follows:

Radial direction:              N_c * cos(26.57) - W*cos(24.59) = m*a_r

θ direction:                      F  - N_c * sin(26.57) + W*sin(24.59) = m*a_θ

Where, F is the force on the peg by rod and N_c is the normal force on peg by the slot. W is the weight of the peg. Using radial equation:

                                       N_c * cos(26.57) - 4.905*cos(24.59) = 0.5*-3.5

                                       N_c = 3.03 N

                                       F  - 3.03 * sin(26.57) + 4.905*sin(24.59) = 0.5*5

                                       F = 1.81 N

4 0
3 years ago
4. Partnership programs between schools and the owners
rusak2 [61]

Answer:

Automotive Technology Program

Explanation:

Basically hiring students for hands on training to learn the basics of mechanics.

4 0
3 years ago
Other questions:
  • Which one of the following statements about the Wright brothers is not true?
    6·1 answer
  • The yield of a chemical process is being studied.The two most important variables are thought to be the pressure and the tempera
    9·1 answer
  • Consider the circuit below where R1 = R4 = 5 Ohms, R2 = R3 = 10 Ohms, Vs1 = 9V, and Vs2 = 6V. Use superposition to solve for the
    15·1 answer
  • If a motorist moves with a speed of 30 km/hr, and covers the distance from place A to place B
    13·1 answer
  • How does the two-stroke Otto cycle differ from the four-stroke Otto cycle?
    6·1 answer
  • Where you live might affect how often you change your cabin air filter.<br> True<br> False
    8·1 answer
  • Robots make computations and calculations using what part
    12·1 answer
  • 8. Find the volume of the figure shown below: * V=L x W x H 7 cm 2 cm 2 cm​
    9·1 answer
  • Explain the use of a vacuum gauge.
    15·1 answer
  • The stagnation chamber of a wind tunnel is connected to a high-pressure airbottle farm which is outside the laboratory building.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!