Efficiency is the minimum use of energy to accomplish the task. The wasted energy will be 375 J when 750 J of energy is given.
<h3>What is wasted energy?</h3>
Wasted energy is energy that is not useful when the transformation in the system occurs.
Total energy = 750 J
The efficiency of the system = 50 %
Output work (OW) is calculated as:
Efficiency = output work ÷ input work × 100%
750 × 50 = 100 OW
OW = 375 J
Wasted energy = Total energy - output work
= 750 - 375
= 375 J
Therefore, the machine is 50 % inefficient and has wasted energy of 375 J.
Learn more about wasted energy here:
brainly.com/question/16177264
#SPJ4
Answer:
The electrical power is 96.5 W/m^2
Explanation:
The energy balance is:
Ein-Eout=0

if:
Gsky=oTsky^4
Eb=oTs^4
qc=h(Ts-Tα)


if Gl≈El(l,5800)

lt= 2*5800=11600 um-K, at this value, F=0.941

The hemispherical emissivity is equal to:

lt=2*333=666 K, at this value, F=0

The hemispherical absorptivity is equal to:

Answer:
True
Explanation:
The best penetration is achieved with dcen current. Mild steel is expensive and requires the most amount of cleaning. Copper-coated steel welding rods are not used for gas tungsten arc welding because they will continue the weld or electrode.
Answer: the answer will be d because it is the right one to be
Explanation:
Answer:
def output_ints_less_than_or_equal_to_threshold(user_values, upper_threshold):
for value in user_values:
if value < upper_threshold:
print(value)
def get_user_values():
n = int(input())
lst = []
for i in range(n):
lst.append(int(input()))
return lst
if __name__ == '__main__':
userValues = get_user_values()
upperThreshold = int(input())
output_ints_less_than_or_equal_to_threshold(userValues, upperThreshold)