If we assume the given segments are those from the vertices to the point of intersection of the diagonals, it seems one diagonal (SW) is 20 yards long and the other (TR) is 44 yards long. The area (A) of the kite is half the product of the diagonals:
... A = (1/2)·SW·TR = (1/2)·(20 yd)·(44 yd)
... A = 440 yd²
Answer:
<u>Given</u>
- tanθ = 3.454
- θ is in the III quadrant
We know in the III quadrant both sine and cosine are negative.
<u>Use the following identities to get values of sinθ and cos θ</u>
- sinθ = - tanθ/√(1 +tan²θ)
- cosθ = - 1/√(1 +tan²θ)
<u>Substitute the value of tanθ and find sine and cosine:</u>
- sinθ = - 3.454/√(1 + 3.454²) = - 0.961
- cosθ = - 1/√(1 + 3.454²) = - 0.278
- 3/14 is your final answer.
Answer:

Step-by-step explanation:
to find the slope between two points use the formula 

simplify

divide -12 by -4
