Answer:
The pressure of the gas would be 3.06 atm
Explanation:
Amonton's law states that the pressure is directly proportional to the absolute temperature of a gas under constant volume. The equation is:
P1 / T1 = P2 / T2
<em>Where P1 is the initial pressure = 3.16atm</em>
<em>T1 is initial absolute temperature = 273.15 + 32.2°C = 305.35K</em>
<em>P2 is our incognite</em>
<em>And T2 is = 273.15 + 22.9°C = 296.05K</em>
<em />
Replacing:
3.16atm / 305.35K = P2 / 296.05K
3.06 atm = P2
<h3>The pressure of the gas would be 3.06 atm</h3>
Answer:
17.3 g
Explanation:
<u>Given the following data;</u>
- Quantity of heat, Q = 0.507 J
- Temperature = 0.007°C
- Specific heat capacity of water = 4.2 J/g°C
Mathematically, Heat capacity is given by the formula;
Where;
- Q represents the heat capacity or quantity of heat.
- M represents the mass of an object.
- C represents the specific heat capacity of water.
- T represents the temperature.
Making "M" the subject of formula, we have;
Substituting the values into the formula, we have;
<em>Mass, m = 17.3 grams</em>
Answer:
2 mole of Sodium hydroxide reacts with 1 mole of Sulfuric acid
Explanation:
Write down the equation in the beginning with reactants and products:
NaOH + H₂SO₄ → Na₂SO₄ + H₂0
Now try to balance it. Try with Na first:
2NaOH + H₂SO₄ → Na₂SO₄ + H₂0
Na atoms are balanced. There are 6 Oxygen atoms on the right and 5 on the left. Balance by increasing the H₂O moles:
2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂0
Check if H atoms are also balanced. They are. That means our final reaction is:
2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂0
2 Moles of NaOH reacts with 1 mole of H₂SO₄
The molality of the solution is obtained as 0.63 m.
<h3>What is the freezing point?</h3>
The freezing point is the temperature at which the liquid is converted into solid.
We know that;
ΔT = 3.5° C
K = 1.86° C/m
i = 3
m = ?
Thus;
ΔT = K m i
m = ΔT/K i
m = 3.5° C/ 1.86° C/m * 3
m = 0.63 m
Learn more about freezing point:brainly.com/question/3121416
#SPJ1
Answer:
hi I'm sorry I can't I just need points