A liquid with high viscosity does not flow easily and is not effective in wetting a surface.
When a metal is subjected to corrosive elements including salt, moisture, and high temperatures, a reaction called corrosion takes place inside the metal. Some foods contain metallic compounds that can corrode a material. The majority of corrosion is simply surface dis-colouration, which polishing agents may quickly remove.
Increasing viscosity and constant intermolecular water bonding together result in surface tension. Any liquid that was more viscous than water possessed a surface tension that was equal to or lower than that of water. Viscosity with surface tension decrease when temperature rises.
Therefore, a liquid with high viscosity does not flow easily and is not effective in wetting a surface.
To know more about viscosity
brainly.com/question/2193315
#SPJ4
Answer:
ano poh paki ult kasi hindi mahintindihan yan question mo hindi mahintindihwn
The total energy required for this conversion is equivalent to the sum of the energies that are used. There are three steps:
1) Heating of liquid acetone
This used 628 J
2) Evaporation of acetone
This used 15.6 kJ or 15,600 J
3) Heating of acetone vapors
This used 712 J
Adding these quantities,
Total energy = 628 + 15,600 + 712
The total energy required was <span>16940 Joules of 16.94 kJ</span>