Answer:
32.7 kilograms of aluminium oxide will be produced.
Explanation:

Mass of aluminum = 17.3 kg = 17300 g (1 kg = 1000 g )
Moles of aluminium = 
According to reaction, 2 moles of aluminum gives 1 mole of aluminum oxide,then 640.74 moles of aluminum will give:
of aluminum oxide
Mass of 320.37 moles of aluminum oxides:
320.37 mol × 102 g/mol = 32,677.74 g = 32.67774 kg ≈ 32.7 kg
32.7 kilograms of aluminium oxide will be produced.
No pressure
Ahhhhhh (filling character req)
Answer: Option (C) is the correct answer.
Explanation:
Molecules in a liquid have less force of attraction as compared to solids. But liquid molecules have more force of attraction as compared to gases.
Since molecules of a gas are held together by weak Vander waal forces, therefore, they expand to fill the container whereas molecules in a liquid are not expanded in a container like gases because of more force of attraction within molecules of liquids as compared to gases.
Hence, a liquid can take the shape of container in which it is kept.
Thus, we can conclude that out of the given options, a liquid change to take the shape of its container but NOT expand to fill the container itself because the particles of a liquid are held together loosely enough to flow, but not so loose that they expand.
I believe the answer is C) there is an obvious reasoning for this all you have to do is eliminate answers that don't seem right for example, A)the plates are all moving the same direction every plate moves in different directions. B) The plates are all the same size. Well, it's really obvious that that is not true because every plate has its different shape and size. D) where two plates meet, they always move apart. If this were true, then we would never have earthquakes when plates meet earthquakes happen. so there for the answer is C)
Heating an atom excites its electrons and they jump to higher energy levels. When the electrons return to lower energy levels, they emit energy in the form of light. ... Every element has a different number of electrons and a different set of energy levels. Thus, each element emits its own set of colours.