Answer:
The atomic weight of an element represents the ratio of the average mass of atoms of a chemical element.
Explanation:
(a) The given data is as follows.
Load applied (P) = 1000 kg
Indentation produced (d) = 2.50 mm
BHI diameter (D) = 10 mm
Expression for Brinell Hardness is as follows.
HB =
Now, putting the given values into the above formula as follows.
HB =
=
=
= 200
Therefore, the Brinell HArdness is 200.
(b) The given data is as follows.
Brinell Hardness = 300
Load (P) = 500 kg
BHI diameter (D) = 10 mm
Indentation produced (d) = ?
d = ![\sqrt{(D^{2} - [D - \frac{2P}{HB} \pi D]^{2})}](https://tex.z-dn.net/?f=%5Csqrt%7B%28D%5E%7B2%7D%20-%20%5BD%20-%20%5Cfrac%7B2P%7D%7BHB%7D%20%5Cpi%20D%5D%5E%7B2%7D%29%7D)
= ![\sqrt{(10 mm)^{2} - [10 mm - \frac{2 \times 500 kg}{300 \times 3.14 \times 10 mm}]^{2}}](https://tex.z-dn.net/?f=%5Csqrt%7B%2810%20mm%29%5E%7B2%7D%20-%20%5B10%20mm%20-%20%5Cfrac%7B2%20%5Ctimes%20500%20kg%7D%7B300%20%5Ctimes%203.14%20%5Ctimes%2010%20mm%7D%5D%5E%7B2%7D%7D)
= 4.46 mm
Hence, the diameter of an indentation to yield a hardness of 300 HB when a 500-kg load is used is 4.46 mm.
The answer to this question would be: Because the increase of temperature will increase volume.
Using PV=nRT formula we can see that temperature increase will cause an increase in volume. Overheating will cause the volume increase, then increasing the volume. If the percent value used is based on the volume, it will seem that the water is increased. But if the percent is using mass, there will be no increases.
That is why sometimes scientists using molality in a reaction with high temperature changes.
Answer:
CH4
Explanation:
I looked it up and took the test