1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tju [1.3M]
3 years ago
12

You are working in the movie industry. The director of a western film has come up with an impressive stunt and has asked you to

assist with its setup. A cowboy sitting on a tree limb is to drop vertically from rest onto his galloping horse as it passes under the limb. The horse gallops at a constant rate of 11.0 m/s along a straight line and the vertical distance between the limb and the level of the saddle is 3.57 m. (Define the point at which the cowboy's bottom and the saddle meet as (x, y) = (0,0).)
(a) You must advise the director as to the position of the horse along the line of its travel when the cowboy should begin his drop. What advice do you provide the director? (Give the magnitude of your answer in m.) m
(b) The director also asks you for advice on how much padding to put on the saddle so that the cowboy is not injured. (Assume the cowboy's flesh is compressed 3.0 cm against the saddle before coming to rest.)
The cowboy would avoid injury if the director adds at least 42.7 cm of padding to the saddle.
The amount of padding necessary to avoid injury would be too thick for the director to hide from the film's audience.
The cowboy would avoid injury if the director adds at least 3.0 cm of padding to the saddle.
No additional padding is necessary and the cowboy's body would withstand the landing without injury.
Physics
1 answer:
VladimirAG [237]3 years ago
5 0

what grade is this if lower than collage i can help

You might be interested in
What is the chemical equation, for li2+h20-li0h, use the drop down menu?
ASHA 777 [7]
The fact I can get is22
6 0
3 years ago
A small ball with mass 1.20 kg is mounted on one end of a rod 0.860 m long and of negligible mass. The system rotates in a horiz
Rufina [12.5K]

Answer:

0.88752 kgm²

0.02236 Nm

Explanation:

m = Mass of ball = 1.2 kg

L = Length of rod = 0.86 m

\theta = Angle = 90°

Rotational inertia is given by

I=mL^2\\\Rightarrow I=1.2\times 0.86^2\\\Rightarrow I=0.88752\ kgm^2

The rotational inertia is 0.88752 kgm²

Torque is given by

\tau=FLsin\theta\\\Rightarrow \tau=2.6\times 10^{-2}\times 0.86sin90\\\Rightarrow \tau=0.02236\ Nm

The torque is 0.02236 Nm

5 0
3 years ago
50 points !! I need help asap.......Consider a 2-kg bowling ball sits on top of a building that is 40 meters tall. It falls to t
r-ruslan [8.4K]

1) At the top of the building, the ball has more potential energy

2) When the ball is halfway through the fall, the potential energy and the kinetic energy are equal

3) Before hitting the ground, the ball has more kinetic energy

4) The potential energy at the top of the building is 784 J

5) The potential energy halfway through the fall is 392 J

6) The kinetic energy halfway through the fall is 392 J

7) The kinetic energy just before hitting the ground is 784 J

Explanation:

1)

The potential energy of an object is given by

PE=mgh

where

m is the mass

g is the acceleration of gravity

h is the height relative to the ground

While the kinetic energy is given by

KE=\frac{1}{2}mv^2

where v is the speed of the object

When the ball is sitting on the top of the building, we have

  • h=40 m, therefore the potential energy is not zero
  • v=0, since the ball is at rest, therefore the kinetic energy is zero

This means that the ball has more potential energy than kinetic energy.

2)

When the ball is halfway through the fall, the height is

h=20 m

So, half of its initial height. This also means that the potential energy is now half of the potential energy at the top (because potential energy is directly proportional to the height).

The total mechanical energy of the ball, which is conserved, is the sum of potential and kinetic energy:

E=PE+KE=const.

At the top of the building,

E=PE_{top}

While halfway through the fall,

PE_{half}=\frac{PE_{top}}{2}=\frac{E}{2}

And the mechanical energy is

E=PE_{half} + KE_{half} = \frac{PE_{top}}{2}+KE_{half}=\frac{E}{2}+KE_{half}

which means

KE_{half}=\frac{E}{2}

So, when the ball is halfway through the fall, the potential energy and the kinetic energy are equal, and they are both half of the total energy.

3)

Just before the ball hits the ground, the situation is the following:

  • The height of the ball relative to the ground is now zero: h=0. This means that the potential energy of the ball is zero: PE=0
  • The kinetic  energy, instead, is not zero: in fact, the ball has gained speed during the fall, so v\neq 0, and therefore the kinetic energy is not zero

Therefore, just before the ball hits the ground, it has more kinetic energy than potential energy.

4)

The potential energy of the ball as it sits on top of the building is given by

PE=mgh

where:

m = 2 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

h = 40 m is the height of the building, where the ball is located

Substituting the values, we find the potential energy of the ball at the top of the building:

PE=(2)(9.8)(40)=784 J

5)

The potential energy of the ball as it is halfway through the fall is given by

PE=mgh

where:

m = 2 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

h = 20 m is the height of the ball relative to the ground

Substituting the values, we find the potential energy of the ball halfway through the fall:

PE=(2)(9.8)(20)=392 J

6)

The kinetic energy of the ball halfway through the fall is given by

KE=\frac{1}{2}mv^2

where

m = 2 kg is the mass of the ball

v = 19.8 m/s is the speed of the ball when it is halfway through the  fall

Substituting the values into the equation, we find the kinetic energy of the ball when it is halfway through the fall:

KE=\frac{1}{2}(2)(19.8)^2=392 J

We notice that halfway through the fall, half of the initial potential energy has converted into kinetic energy.

7)

The kinetic energy of the ball just before hitting the ground is given by

KE=\frac{1}{2}mv^2

where:

m = 2 kg is the mass of the ball

v = 28 m/s is the speed of the ball just before hitting the ground

Substituting the values into the equation, we find the kinetic energy of the ball just before hitting the ground:

KE=\frac{1}{2}(2)(28)^2=784 J

We notice that when the ball is about to hit the ground, all the potential energy has converted into kinetic energy.

Learn more about kinetic and potential energy:

brainly.com/question/6536722

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

4 0
3 years ago
What is a Geographic test
Genrish500 [490]
<em>It's a test on Geography!
</em>
8 0
3 years ago
Read 2 more answers
Difference between pulling and pushing force​
Mrac [35]

Answer:

Push and pull both are forces , but the difference is in their direction at which it is applied . If the force applied in the direction of motion of the particle then we call it as push . If that force applied in the direction OPPOSITE to the motion of particle then it is termed as pull

7 0
3 years ago
Other questions:
  • A long wire carrying a 6.0 A current perpendicular to the xy-plane intersects the x-axis at x=−2.2cm. A second, parallel wire ca
    9·1 answer
  • Which image shows both potential and kinetic energy
    5·2 answers
  • A 200-loop coil of cross sectional area 8.5 cm2 lies in the plane of the page. An external magnetic field of 0.060 T is directed
    5·1 answer
  • which tool would you use to measure the amount of rainfall? a. graduated cylinder b. stopwatch c. scale d. thermometer
    11·2 answers
  • Calculate the density of a material that has a mass of 52.457 g and a volume of 13.5 cm3
    9·1 answer
  • "Nuclear stability is based on (choose
    5·1 answer
  • Plz answer these two questions. I am so sick.if u ddo it would mean a lot.
    14·1 answer
  • If the half-life of a decaying isotope is 10 years, which statement is true after<br> 10 years?
    13·1 answer
  • Calculate the force between charges of 55 × 108 C and 1 × 107C if they are 5 <br><br>cm apart.?​
    13·1 answer
  • Please help me asap !!!!!!
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!