1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Jet001 [13]
3 years ago
7

The higher the amplitude of the wave, the greater its intensity and the greater its loudness.

Physics
1 answer:
lyudmila [28]3 years ago
4 0
True,when you turn the volume up on your  television , you're actually turning up the amplitude<span>!

</span>
You might be interested in
What do scientists use to explain an atom or the universe?
slega [8]
Scientists use theories to explain these things

7 0
3 years ago
Imagine that the ball on the left is given a nonzero initial velocity in the horizontal direction, while the ball on the right c
masya89 [10]

Answer:

vₓ = xg/2y

Explanation:

In this question, let us  find the time it takes for the ball on the right that has zero initial velocity to reach the ground.

By newton equation of motion we know that

y = v₀ t - ½ g t²

t = 2y / g

This is the time it takes for the ball on the right to reach the ground; at this time the ball on the left travels a distance

vₓ = x/t

vₓ = xg/2y

vₓ = xg/2y

Where we assume that x and y are known.

7 0
3 years ago
An object of mass 30 kg is falling in air and experiences a force due to air resistance of 50
Setler79 [48]

Answer:

very hard others will answer it

Explanation:

hard

6 0
2 years ago
The system below has a friction force of 25 N acting on the cart which 8 kg. The mass hanging off the edge has a mass of 6 kg. F
photoshop1234 [79]

The cart will be pulled to the right by the hanging mass, so by Newton's second law, the net force on the cart is

<em>T</em> - 25 N = (8 kg) <em>a</em>

where <em>T</em> is the tension in the rope and <em>a</em> is the acceleration.

The hanging mass has a net force of

(6 kg) <em>g</em> - <em>T</em> = (6 kg) <em>a</em>

where <em>g</em> = 9.8 m/s².

Adding these equations together eliminates <em>T</em>, and we can solve for <em>a</em> :

(<em>T</em> - 25 N) + ((6 kg) <em>g</em> - <em>T </em>) = (14 kg) <em>a</em>

33.8 N = (14 kg) <em>a</em>

<em>a</em> = (33.8 N) / (14 kg) ≈ 2.4 m/s²

Then the tension in the rope is

<em>T</em> - 25 N = (8 kg) (2.4 m/s²)

<em>T</em> ≈ 25 N + 19.31 N ≈ 44 N

5 0
3 years ago
A tennis ball travelling at a speed of 46m/s with a mass of 58kg. Calculate the kinetic<br>energy​
Zanzabum

Answer:

its 1/2 the mass of the object times by its velocity ^ 2

7 0
3 years ago
Other questions:
  • O ônibus espacial,preso sobre o avião está em movimento ou repouso?
    7·1 answer
  • A quantitative description of kinematics involves using __ to describe the motion
    6·2 answers
  • A balloon is negatively charged by rubbing and then clings to a wall. does this mean that the wall is positively charged? why or
    7·2 answers
  • What is angle of dip​
    10·1 answer
  • You biked to the store in 10 minutes. The store was 3 km away. What was your average speed?
    12·1 answer
  • An airplane wing is designed to make the air move
    8·1 answer
  • A bowling ball has a mass of 10 kilograms. A tennis ball has a mass of 0.08 kilogram. How much inertia does the bowling ball hav
    6·1 answer
  • A 20 kg sled stars at the top of a hill which is 10 m above the bottom and slides a distance of 50 m, ending at the bottom of th
    15·1 answer
  • Write down the role played by four digestive juices in digestion and the
    10·1 answer
  • A 10 kg wagon is accelerated by a constant force of 60 N from an initial velocity of 5.0 m/s to a final velocity of 11 m/s. What
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!