1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
viva [34]
3 years ago
7

How strong is a black holes gravity? (you will get a lot on notifications if you answer)

Physics
2 answers:
Eva8 [605]3 years ago
4 0

Answer:

they are mysteries

Explanation:

there is no good answer that I know of because we haven't studied that far out in space

lesya692 [45]3 years ago
3 0

Answer:

A black hole is a region of spacetime where gravity is so strong that nothing—no particles or even electromagnetic radiation such as light—can escape from it. The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole.

You might be interested in
A 0.18 m radius pulley is free to rotate about a horizontal axis. A mass and a mass are attached by a massless string, which is
Musya8 [376]

Answer:

T = 1.766(M-m) Nm where M and m are the 2 masses of the objects

Explanation:

Let m and M be the masses of the 2 objects and M > m so the system would produce torque and rotational motion on the pulley. Force of gravity that exert on each of the mass are mg and Mg. Since Mg > mg, the net force on the system is Mg - mg or g(M - m) toward the heavier mass.

Ignore friction and string mass, and let g = 9.81 m/s2, the net torque on the pulley is the product of net force and arm distance to the pivot point, which is pulley radius r = 0.18 m

T = Fr = g(M - m)0.18 = 0.18*9.81(M - m) = 1.766(M-m) Nm

8 0
3 years ago
A girl of mass m1=60 kilograms springs from a trampoline with an initial upward velocity of v1=8.0 meters per second. At height
AleksandrR [38]

a) 5.0 m/s

This first part of the problem can be solved by using the conservation of energy. In fact, the mechanical energy of the girl just after she jumps is equal to her kinetic energy:

E_i=\frac{1}{2}m_1v_1^2

where m1 = 60 kg is the girl's mass and v1 = 8.0 m/s is her initial velocity.

When she reaches the height of h = 2.0 m, her mechanical energy is sum of kinetic energy and potential energy:

E_f = \frac{1}{2}m_1 v_2 ^2 + m_1 gh

where v2 is the new speed of the girl (before grabbing the box), and h = 2.0m. Equalizing the two equations (because the mechanical energy is conserved), we find

\frac{1}{2}m_1 v_1^2 = \frac{1}{2}m_1 v_2 ^2 + m_1 gh\\v_1^2 = v_2^2 +2gh\\v_2 = \sqrt{v_1^2 -2gh}=\sqrt{(8.0 m/s)^2-(2)(9.8 m/s^2)(2.0 m)}=5.0 m/s

b) 4.0 m/s

After the girl grab the box, the total momentum of the system must be conserved. This means that the initial momentum of the girl must be equal to the total momentum of the girl+box after the girl catches the box:

p_i = p_f\\m_1 v_2 = (m_1 + m_2) v_3

where m2 = 15 kg is the mass of the box. Solving the equation for v3, the combined velocity of the girl+box, we find

v_3 = \frac{m_1 v_2}{m_1 + m_2}=\frac{(60 kg)(5.0 m/s)}{60 kg+15 kg}=4 m/s

c) 2.8 m

We can use again the law of conservation of energy. The total mechanical energy of the girl after she catches the box is sum of kinetic energy and potential energy:

E_i = \frac{1}{2}(m_1+m_2) v_3^2 + (m_1+m_2)gh=\frac{1}{2}(75 kg)(4 m/s)^2+(75 kg)(9.8 m/s^2)(2.0m)=2070 J

While at the maximum height, the speed is zero, so all the mechanical energy is just potential energy:

E_f = (m_1 +m_2)gh_{max}

where h_max is the maximum height. Equalizing the two expressions (because the mechanical energy must be conserved) and solving for h_max, we find

E_i = (m_1+m_2)gh_{max}\\h_{max}=\frac{E_i}{(m_1+m_2)g}=\frac{2070 J}{(75 kg)(9.8 m/s^2)}=2.8 m

4 0
3 years ago
A bullet is shot horizontally from shoulder height (1.5 m) with an initial speed 200 m/s. (a) How much time elapses before the b
daser333 [38]

Answer:

<h2>a) Time elapsed before the bullet hits the ground is 0.553 seconds.</h2><h2>b) The bullet travels horizontally 110.6 m</h2>

Explanation:

a)  Consider the vertical motion of bullet

We have equation of motion s = ut + 0.5 at²

        Initial velocity, u = 0 m/s

        Acceleration, a = 9.81 m/s²  

        Displacement, s = 1.5 m      

     Substituting

                      s = ut + 0.5 at²

                      1.5 = 0 x t + 0.5 x 9.81 xt²

                      t = 0.553 s

      Time elapsed before the bullet hits the ground is 0.553 seconds.

b) Consider the horizontal motion of bullet

We have equation of motion s = ut + 0.5 at²

        Initial velocity, u = 200 m/s

        Acceleration, a = 0 m/s²  

        Time, t = 0.553 s      

     Substituting

                      s = ut + 0.5 at²

                      s = 200 x 0.553 + 0.5 x 0 x 0.553²

                      s = 110.6 m

      The bullet travels horizontally 110.6 m

6 0
3 years ago
Orginize it
tensa zangetsu [6.8K]
Radiation: Getting sunburnt on a beach.
- The sun’s radiation (no direct contact) is what causes the skin to burn.
Radiation: Microwave cooking food
- Microwaves use radiation to heat the food inside of it; between radio waves and infrared radiation on the electromagnetic spectrum
Conduction: Touching a hot car seat in the summer
- Conduction is the transfer of heat by direct contact (hand to seat).
Conduction: Burning yourself with a curling iron (Similar to above; direct contact).

Convection: An ocean breeze
- Convection near coastlines cause the transfer of energy; water warms and cools slower than land.
Conduction: Sliding down a hot metal slide in august
- You are in direct contact with the slide, which is hot due to the temperature.
Convection: Water in a boiling pot of macaroni
- The water, a liquid, is being heated by molecular motion.
Convection: Currents deep within the earth that cause tectonic plates to move
- Convection currents drive the movement of tectonic plates in the mantle, which is fluid/molten. The currents circulate under the asthenosphere.

6 0
2 years ago
Thalia is drafting a plan to move a large, perfect sphere concrete sculpture that is in front of her office building. Describe t
Charra [1.4K]

Answer:She would need to first know the weight of the sculpture and what she is going to move it with then she will need to use newton's second law to calculate the amount of force needed to move it

Explanation: I just did the assignment on edgunity

3 0
3 years ago
Read 2 more answers
Other questions:
  • You construct a circuit containing some component C, along with other circuit elements. You want to simultaneously measure the c
    12·1 answer
  • What is gravity? I need help.
    14·2 answers
  • When the potential difference between the plates of an ideal air‐filled parallel plate capacitor is 35 v, the electric field bet
    8·1 answer
  • Suppose you want to move a big rock in your yard. It is about waist high and 4 feet long, has a volume of 1.2 m3 and a density o
    9·1 answer
  • Which planet is closest to the sun? Venus Pluto Neptune Mercury
    7·2 answers
  • Moving a magnet inside of a coil of wire will induce a voltage in the coil. How is the voltage in the coil increased?
    9·1 answer
  • Why is the chemical formula magnesium sulfide written as MgS and NOT Mg2S2?
    11·2 answers
  • Give the method of heat transfer and give it application in a thermoflask​
    11·2 answers
  • The period of a pendulum T depends on a constant g and the length of the pendulum ????in a relation given by
    6·1 answer
  • Which arrow represents the substance’s change of state?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!