It might.
If the speed of light depends on the viscosity of the medium, then yes i think so.
Vs = 1.0 mL = 0.001 L
c((NH4)2CO3) = <span>0.02 M
n(</span>(NH4)2CO3) = ?
For the purpose, here we will use the next equation:
c=n/V ⇒ n=cxV
n((NH4)2CO3) = 0.02M x 0.001L
n((NH4)2CO3) = 2x10⁻⁵ mole of (NH4)2CO3 is presented in the solution
Basis of the calculation: 100g
For Carbon:
Mass of carbon = (100 g)(0.80) = 80 g
Number of moles of carbon = (80 g)(1 mole / 12g) = 20/3
For Hydrogen:
Mass of hydrogen = (100 g)(0.20) = 20 g
Number of moles of hydrogen = (20 g)(1 mole / 1 g) = 20
Translating the answer to the formula of the substance,
C20/3H20
Dividing the answer,
CH3
The molar mass of the empirical formula is:
12 + 3 = 15 g/mol
Since, the molar mass given for the molecular formula is 30.069 g/mol, the molecular equation is,
C2H6
ANSWER: C2H6
To balance Ca + Cl2 = CaCl2 you'll need to be sure to count all of atoms on each side of the chemical equation.
Once you know how many of each type of atom you can only change the coefficients (the numbers in front of atoms or compounds) to balance the equation for Calcium + Chlorine gas.
The first step to solve this problem is to multiply the volume of solution times its concentration to find the number of moles needed, remember that M=mol/L:

Now, use the molar mass of sucrose to find the number of grams needed to make the solution. This is, multiply the number of moles needed times the molar mass:

It means that to make 0.500L of a 0.475M you will have to weigh 81.225g of sucrose.