<span>Let's assume
that the oxygen gas has ideal gas behavior.
Then we can use ideal gas formula,
PV = nRT</span>
Where, P is the pressure of the gas (Pa), V is the volume of the gas
(m³), n is the number of moles of gas (mol), R is the universal gas
constant ( 8.314 J mol⁻¹ K⁻¹) and T is temperature in Kelvin.
<span>
P = 2.2 atm = 222915 Pa
V = 21 L = 21 x 10</span>⁻³ m³
n = ?
R = 8.314 J mol⁻¹ K⁻¹
<span>
T = 87 °C = 360 K
By substitution,
</span>222915 Pa x 21 x 10⁻³ m³ = n x 8.314 J mol⁻¹ K⁻<span>¹ x 360 K
n
= 1.56</span><span> mol</span>
<span>
Hence, 1.56 moles of the oxygen gas are </span><span>
left for you to breath.</span><span>
</span>
Answer:
Elements having same valence electrons are placed in <u>same group.</u>
Explanation:
First, let's start with some basic concepts of modern periodic table:
1. Modern Periodic table : It is the arrangement of element in the increasing order of their atomic numbers
The Modern periodic table is divided into Periods and groups .
Periods : These are the horizontal rows. There are seven periods in the periodic table . Period 1 has 2 element. Period two and three has 8 elements , period 4 and 5 have 18 elements and the period 6 and 7 have 32 elements.
Same period have same number of atomic orbital(Shell)
Group : The group is the vertical columns . There are 18 groups in the modern periodic table.Those element which have same group number will also have same number of electron in their outermost shell. The number of electron in the outermost shell determines the valency of the element.
So, elements showing same valency are placed in same group.
All alkali are place in group 1 and have 1 valance electron in the outermost shell
Answer:
Gases are easily compressed. We can see evidence of this in Table 1 in Thermal Expansion of Solids and Liquids, where you will note that gases have the largest coefficients of volume expansion. The large coefficients mean that gases expand and contract very rapidly with temperature changes. In addition, you will note that most gases expand at the same rate, or have the same β. This raises the question as to why gases should all act in nearly the same way, when liquids and solids have widely varying expansion rates.
The answer lies in the large separation of atoms and molecules in gases, compared to their sizes, as illustrated in Figure 2. Because atoms and molecules have large separations, forces between them can be ignored, except when they collide with each other during collisions. The motion of atoms and molecules (at temperatures well above the boiling temperature) is fast, such that the gas occupies all of the accessible volume and the expansion of gases is rapid. In contrast, in liquids and solids, atoms and molecules are closer together and are quite sensitive to the forces between them.
1 mole ------------- 6.02x10²³ atoms
4.93 moles ------- ??
4.93 x ( 6.02x10²³) / 1 =
=> 2.96x10²⁴ atoms