The square's diagonal is the triangle's hypotenuse.
The Pythagorean theorem is =
Here, 'c' is the hypotenuse and 'a' and 'b' are the two sides of the triangle.
As the side is given 12 inches, so this becomes




inches
The answer to the question is 13
Answer:
1595 ft^2
Step-by-step explanation:
The answer is obtained by adding the areas of sectors of several circles.
1. Think of the rope being vertical going up from the corner where it is tied. It goes up along the 10-ft side. Now think of the length of the rope being a radius of a circle, rotate it counterclockwise until it is horizontal and is on top of the bottom 20-ft side. That area is 3/4 of a circle of radius 24.5 ft.
2. With the rope in this position, along the bottom 20-ft side, 4.5 ft of the rope stick out the right side of the barn. That amount if rope allows for a 1/4 circle of 4.5-ft radius on the right side of the barn.
3. With the rope in the position of 1. above, vertical and along the 10-ft left side, 14.5 ft of rope extend past the barn's 10-ft left wall. That extra 14.5 ft of rope are now the radius of a 1/4 circle along the upper 20-ft wall.
The area is the sum of the areas described above in numbers 1., 2., and 3.
total area = area 1 + area 2 + area 3
area of circle = (pi)r^2
total area = 3/4 * (pi)(24.5 ft)^2 + 1/4 * (pi)(4.5 ft)^2 + 1/4 * (pi)(14.5 ft)^2
total area = 1414.31 ft^2 + 15.90 ft^2 + 165.13 ft^2
total area = 1595.34 ft^2
<em><u>The average would be 16.</u></em>
To calculate this, add all the values together then divide that sum by the amount of data values.
11+16+15+22=64
64÷4=16