Answer:
The product is significantly impure
Explanation:
In order to test for the purity of a specific sample that was synthesized, the melting point of a compound is measured. Basically speaking, the melting point identifies how pure a compound is. There are several cases that are worth noting:
- if the measured melting point is significantly lower than theoretical, e. g., lower by 3 or more degrees, we conclude that our compound contains a substantial amount of impurities;
- wide range in the melting point indicates impurities, unless it agrees with the theoretical range.
Since our compound is even 10 degrees Celsius lower than expected, it indicates that the compound is significantly impure.
Comets are balls of ice and dust in orbit around the Sun. The orbits of comets are different from those of planets - they are elliptical. A comet's orbit takes it very close to the Sun and then far away again.
As we know,
1 D = 3.34 × 10⁻³⁰ C.m
So,
1.44 D = ?
Solving for 1.44 D,
= (3.34 × 10⁻³⁰ C.m × 1.44 D) ÷ 1 D
1.44 D = 4.80 × 10⁻³⁰ C.m
Dipole Moment is given as,
Dipole Moment = q × r
Solving for q,
q = Dipole Moment / r ------ (1)
Where,
Dipole Moment = 4.80 × 10⁻³⁰ C.m
r = 163 pm = 1.63 × 10⁻¹⁰ m
Putting values in eq. 1,
q = 4.80 × 10⁻³⁰ C.m / 1.63 × 10⁻¹⁰ m
q = 2.94 × 10⁻²⁰ C
As,
1.602 × 10⁻¹⁹ C = 1 e⁻
So,
2.94 × 10⁻²⁰ C = X e⁻
Solving for X,
X = (2.94 × 10⁻²⁰ C × 1 e⁻) ÷ 1.602 × 10⁻¹⁹ C
= 0.183 e⁻
Result:
So one element is containing + 0.183 e⁻ while the other element is containing - 0.183 e⁻.