Answer:
11) the difference in heat energies between products and reactants
12) enthalpy change
Explanation:
The heat of reaction is defined as that energy released or absorbed as chemical substances participate in a chemical reaction. It is a term used to denote the change in energy as reactants change into products.
Another name of heat of reaction is enthalpy of reaction. It is a state function since it depends on the initial and final states of the system.
A binary compound of oxygen with another element is called oxide. An oxide is a binary compound of oxygen and another element. Oxygen combines with metals and non-metals to form respective oxides.
The pH of a solution is 9.02.
c(HCN) = 1.25 M; concentration of the cyanide acid
n(NaCN) = 1.37 mol; amount of the salt
V = 1.699 l; volume of the solution
c(NaCN) = 1.37 mol ÷ 1.699 l
c(NaCN) = 0.806 M; concentration of the salt
Ka = 6.2 × 10⁻¹⁰; acid constant
pKa = -logKa
pKa = - log (6.2 × 10⁻¹⁰)
pKa = 9.21
Henderson–Hasselbalch equation for the buffer solution:
pH = pKa + log(cs/ck)
pH = pKa + log(cs/ck)
pH = 9.21 + log (0.806M/1.25M)
pH = 9.21 - 0.19
pH = 9.02; potential of hydrogen
More about buffer: brainly.com/question/4177791
#SPJ4
Answer:
Relative and average atomic mass both describe properties of an element related to its different isotopes.
Explanation:However, relative atomic mass is a standardized number that's assumed to be correct under most circumstances, while average atomic mass is only true for a specific sample.
Because so objects are denser than water and some are less dense than water