Answer:
Mutualisms/Symbiotic relationships
Explanation:
It’s a mutual beneficial relationship that helps both sides… for example… clownfish and sea anemones. The sea anemones provide the clownfish protection and shelter, and the clownfish provides nutrients from waste for the anemones.
Hope that helped!
Answer:
1.25 M
Explanation:
Step 1: Given data
Mass of KI (solute): 20.68 g
Volume of the solution: 100 mL (0.100 L)
Step 2: Calculate the moles of solute
The molar mass of KI is 166.00 g/mol.
20.68 g × 1 mol/166.00 g = 0.1246 mol
Step 3: Calculate the molar concentration of KI
Molarity is equal to the moles of solute divided by the liters of solution.
M = 0.1246 mol/0.100 L= 1.25 M
Answer:
a
Explanation:
it would be the most reasonable
The equilibrium constant of the reaction is 282. Option D
<h3>What is equilibrium constant?</h3>
The term equilibrium constant refers to the number that often depict how much the process is able to turn the reactants in to products. In other words, if the reactants are readily turned into products, then it follows that the equilibrium constant will be large and positive.
Concentration of bromine = 0.600 mol /1.000-L = 0.600 M
Concentration of iodine = 1.600 mol/1.000-L = 1.600M
In this case, we must set up the ICE table as shown;
Br2(g) + I2(g) ↔ 2IBr(g)
I 0.6 1.6 0
C -x -x +2x
E 0.6 - x 1.6 - x 1.190
If 2x = 1.190
x = 1.190/2
x = 0.595
The concentrations at equilibrium are;
[Br2] = 0.6 - 0.595 = 0.005
[I2] = 1.6 - 0.595 = 1.005
Hence;
Kc = [IBr]^2/[Br2] [I2]
Kc = ( 1.190)^2/(0.005) (1.005)
Kc = 282
Learn more about equilibrium constant:brainly.com/question/15118952
#SPJ1
Reactant C is the limiting reactant in this scenario.
Explanation:
The reactant in the balanced chemical reaction which gives the smaller amount or moles of product is the limiting reagent.
Balanced chemical reaction is:
A + 2B + 3C → 2D + E
number of moles
A = 0.50 mole
B = 0.60 moles
C = 0.90 moles
Taking A as the reactant
1 mole of A reacted to form 2 moles of D
0.50 moles of A will produce =
thus 0.50 moles of A will produce 1 mole of D
Taking B as the reactant
2 moles of B reacted to form 2 moles of D
0.60 moles of B reacted to form x moles of D
=
x = 2 moles of D is produced.
Taking C as the reactant:
3 moles of C reacted to form 2 moles of D
O.9 moles of C reacted to form x moles of D
=
= 0.60 moles of D is formed.
Thus C is the limiting reagent in the given reaction as it produces smallest mass of product.