<h3>
Answer:</h3>
3.38 × 10²⁴ molecules CO₂
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 5.61 moles CO₂
[Solve] molecules CO₂
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- [DA] Set up:
- [DA] Multiply/Divide [Cancel out units]:
<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
3.37834 × 10²⁴ molecules CO₂ ≈ 3.38 × 10²⁴ molecules CO₂
The answer has to be either CO2 or mg. But i am not sure which one
In order to make the dissolution of the solid compound in water to occur at a faster rate, Samuel could do the following:
1. Break down the solid into tiny particles: breaking down the solid into tiny particles increases the surface area of the solid and thus increase the quantity of the substance that comes in contact with the solvent per time, this leads to a faster dissolution of the solid.
2. Stir the liquid with iron rod: Samuel can increase the dissolution rate of the substance by stirring it continuously with iron rod.
3. Increasing the temperature:Samuel could also increase the rate of dissolution of the substance by increasing the temperature of the water.