4 is correct for this one
Answer:

Explanation:
![\Delta H_{rxn}=\sum [n_{i}\times \Delta H_{f}^{0}(product)_{i}]-\sum [n_{j}\times \Delta H_{f}^{0}(reactant_{j})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn_%7Bi%7D%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28product%29_%7Bi%7D%5D-%5Csum%20%5Bn_%7Bj%7D%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28reactant_%7Bj%7D%29%5D)
Where
and
are number of moles of product and reactant respectively (equal to their stoichiometric coefficient).
is standard heat of formation.
So, ![\Delta H_{rxn}=[2mol\times \Delta H_{f}^{0}(CO_{2})_{g}]+[3mol\times \Delta H_{f}^{0}(H_{2}O)_{g}]-[1mol\times \Delta H_{f}^{0}(C_{2}H_{5}OH)_{l}]-[3mol\times \Delta H_{f}^{0}(O_{2})_{g}]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B2mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28CO_%7B2%7D%29_%7Bg%7D%5D%2B%5B3mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28H_%7B2%7DO%29_%7Bg%7D%5D-%5B1mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28C_%7B2%7DH_%7B5%7DOH%29_%7Bl%7D%5D-%5B3mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28O_%7B2%7D%29_%7Bg%7D%5D)
or, ![\Delta H_{rxn}=[2mol\times -393.509kJ/mol]+[3mol\times -241.818kJ/mol]-[1mol\times -277.69kJ/mol]-[3mol\times 0kJ/mol]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B2mol%5Ctimes%20-393.509kJ%2Fmol%5D%2B%5B3mol%5Ctimes%20-241.818kJ%2Fmol%5D-%5B1mol%5Ctimes%20-277.69kJ%2Fmol%5D-%5B3mol%5Ctimes%200kJ%2Fmol%5D)
or, 
Answer:
I think It is an organism
2 C2H6 + 7 O2 -> 4CO2 + 6 H2O
<span>so the products are carbondioxide & water vapour</span>
Answer:
based on what you know about prokaryotic cells and eukaryotic cells the bacterial cell shown in the venn diagram below is a prokaryotic cell while the fungal cell is a eukaryotic
Explanation:
hope it help and if it doesnt sorry ;)