Answer:
WHERE IS THE EQUATION ?????
Explanation:
Answer:

Explanation:
The pressure at the bottom of the tank is:


The force exerted on the circular bottom is:
![F=(73581.921\,Pa)\cdot (\frac{\pi}{4} )\cdot [(12\,ft)\cdot (\frac{0.305\,m}{1\,ft} )]^{2}](https://tex.z-dn.net/?f=F%3D%2873581.921%5C%2CPa%29%5Ccdot%20%28%5Cfrac%7B%5Cpi%7D%7B4%7D%20%29%5Ccdot%20%5B%2812%5C%2Cft%29%5Ccdot%20%28%5Cfrac%7B0.305%5C%2Cm%7D%7B1%5C%2Cft%7D%20%29%5D%5E%7B2%7D)

Answer: 0.422 M⁻¹s⁻¹
Explanation: <u>Reaction</u> <u>Rate</u> is the speed of decomposition of the reactant(s) per unit of time.
A <u>Rate</u> <u>Law</u> relates concentration of reactants, rate reaction and rate constant:
![r=k[A]^{x}[B]^{y}](https://tex.z-dn.net/?f=r%3Dk%5BA%5D%5E%7Bx%7D%5BB%5D%5E%7By%7D)
where
[A] and [B] are reactants concentration
x and y are reaction order, not related to the stoichiometric coefficients
k is rate constant
r is rate
Before calculating rate constant, first we have to determine reaction order.
In this question, the reactio order is 2. So, the rate law for it is
![-\frac{d[A]}{dt} =k[A]^{2}](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%20%3Dk%5BA%5D%5E%7B2%7D)
and the integrated formula is
![\frac{1}{[A]} =\frac{1}{[A]_{0}} +kt](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%20%3D%5Cfrac%7B1%7D%7B%5BA%5D_%7B0%7D%7D%20%2Bkt)
in which
[A]₀ is initial concentration of reactant
Then, using initial concentration at initial time and final concentration at final time:



k = 0.422
The rate constant for the reaction is 0.422 M⁻¹.s⁻¹
The activity series goes top to bottom, most active to least active elements, going: Li, K, Ba, Sr, Ca, Na, Mg, Mn, Zn, Fe, Cd, Co, Ni, Sn, Pb, H, Cu, Ag, Hg, Au.
Thus, your list of metals would go from most reactive to least reactive: Li, K, Mg, Zn, Fe, Cu, Au