Answer:
1.12 × 10⁻⁴ M
Explanation:
Step 1: Write the reaction for the solution of Mg(OH)₂
Mg(OH)₂(s) ⇄ Mg²⁺(aq) + 2 OH⁻(aq)
Step 2: Make an ICE chart
We can relate the solubility product constant (Ksp) with the solubility (S) through an ICE chart.
Mg(OH)₂(s) ⇄ Mg²⁺(aq) + 2 OH⁻(aq)
I 0 0
C +S +2S
E S 2S
The solubility product constant is:
Ksp = 5.61 × 10⁻¹² = [Mg²⁺] × [OH⁻]² = S × (2S)² = 4S³
S = 1.12 × 10⁻⁴ M
Answer:
C8H8 + 10O2 → 8CO2 + 4H2O
Explanation:
unbalanced reaction:
C8H8 + O2 → CO2 + H2O
balanced for semireactions:
(1) 16H2O + C8H8 → 8CO2 + 40H+
(2) 10(4H+ + O2 → 2H2O)
⇒ 40H+ + 10O2 → 20H2O
(1) + (2):
balanced reaction:
⇒ C8H8 + 10O2 → 8CO2 + 4H2O
8 - C - 8
20 - O2 - 20
8 - H - 8
A threat is a potential risk loss to an asset
Answer:
1.94 × 10⁻³
Explanation:
Step 1: Calculate the concentration of H⁺ ions
We will use the definition of pH.
pH = -log [H⁺]
[H⁺] = antilog -pH = antilog -2.32 = 4.79 × 10⁻³ M
Step 2: Calculate the acid dissociation constant (Ka) of the acid
For a monoprotic weak acid, whose concentration (Ca) is 0.0118 M, we can use the following expression.
Ka = [H⁺]²/Ca
Ka = (4.79 × 10⁻³)²/0.0118 = 1.94 × 10⁻³
The following is produced when propane (C₃H₈) is combusted completely : H₂O
<h3>Further explanation </h3>
Complete combustion of Hydrocarbons with Oxygen will be obtained by CO₂ and H₂O compounds.
If O₂ is insufficient there will be incomplete combustion produced by CO and H and O
Hydrocarbon combustion reactions (especially alkanes) 
For combustion of propane C₃H₈ (n = 3) ⇒ completely(excess O₂) :
C₃H₈+5O₂⇒3CO₂+4H₂O
The products of combustion : CO₂ and H₂O