Explanation:
Mass of bumper cars, 
Initial speed of car A, 
Initial speed of car Z, 
Final speed of car A after the collision, 
We need to find the velocity of car Z after the collision. Let it is equal to
. Using the conservation of momentum as :




So, the velocity of car Z after the collision is (-12 m/s). Hence, this is the required solution.
False as oxygen is the second most abundant and nitrogen is the most abundant at 78%.
Answer:
L/D= 112
Explanation:
Aerodynamics can be defined as the branch of dynamics which deals with the motion of air, their properties and the interaction between the air and solid bodies.
Aerodynamics law explains how an airplane is able to fly. There are four forces of flight, and they are; lift, weight, thrust and drag. The amount of lift generated by a wing divided by the aerodynamic drag is known as the lift to drag ratio.
Lift increases proportionally to the square of the speed.
The solutions to the question is the file attached to this explanation.
Lift,L= qC(l). S---------------------------(1).
and,
Drag,D = qC(d).S ----------------------(2).
Hence, Lift to drag ratio,L/D= C(l)/C(d).
Therefore, we have to compute various angle of attack.(check attached file)...
Then, (L/D) will then be equal to 112.
The answer is C. Hope this helps.
Answer:
a) v = 4.4 m/s
b) F = 400 N
Explanation:
a) ½kx² = ½mv²
v = √(kx²/m)
F = kx
v = √(Fx/m)
v = √(800(0.012) / 0.5) = √19.2 = 4.3817...
b) Fd = ½mv²
F = mv²/2d
F = 0.5(19.2) / (2(0.012) = 400 N