Work= Force in the direction of displacement*displacement.
You know the force in the direction of displacement (horizontally) and the displacement. So,
W=130*11=1430
Therefore, the work done is 1,430 Joules
I'm going to assume that this gripping drama takes place on planet Earth, where the acceleration of gravity is 9.8 m/s². The solutions would be completely different if the same scenario were to play out in other places.
A ball is thrown upward with a speed of 40 m/s. Gravity decreases its upward speed (increases its downward speed) by 9.8 m/s every second.
So, the ball reaches its highest point after (40 m/s)/(9.8 m/s²) = <em>4.08 seconds</em>. At that point, it runs out of upward gas, and begins falling.
Just like so many other aspects of life, the downward fall is an exact "mirror image" of the upward trip. After another 4.08 seconds, the ball has returned to the height of the hand which flung it. In total, the ball is in the air for <em>8.16 seconds</em> up and down.
Answer:
Long sight occurs when the eyeball is too short or the lens is too thin, or both. As a result, light rays from near objects are focused behind the retina because the light rays are not converged enough. The image formed on the retina is therefore out of focus.
To correct this problem, people can wear glasses with convex lenses. Light rays from near objects are converged by the convex lenses before entering the eyes, so that light can be focused on the retina to form a sharp image. Additionally, long sight can also be corrected by surgical methods such as LASIK.
Answer:
The bulk modulus of the liquid is 1.534 x 10¹⁰ N/m²
Explanation:
Given;
density of the liquid, ρ = 1500 kg/m³
frequency of the wave, F = 410 Hz
wavelength of the sound, λ = 7.80 m
The speed of the wave is calculated as;
v = Fλ
v = 410 x 7.8
v = 3,198 m/s
The bulk modulus of the liquid is calculated as;

Therefore, the bulk modulus of the liquid is 1.534 x 10¹⁰ N/m²
Crystalline solids must have a specific, orderly arrangement of atoms to be considered so.