The final magnification will be 400-fold or 400 times the original size of the object.
For magnifying smaller objects, a compound microscope is used.
A compound microscope consists of an objective and an eyepiece, whose diagram is shown in the adjoining image.
The lens near the object is called an objective and the other one is the eyepiece.
Let the magnification of the objective be m1
Let the magnification of the eyepiece be m2
The final magnification by the microscope, M, will be
M = m1 x m2
Putting the values in the above equation
M = 40 x 10
M= 400
Thus, the final magnification will be 400-fold or 400 times the original size of the object.
To know more about "optical instruments", refer to the link given below:
brainly.com/question/13276240?referrer=searchResults\
#SPJ4
Answer:
v' = 2.4 m/s
Explanation:
Given that,
Mass of one skater, m = 60 kg
Mass of the other's skater, m' = 60 kg
The two skaters push off each other. After the push, the smaller skater has a velocity of 3.0 m/s.
When there is no external force acting on a system, the momentum remains conserved. It means initial momentum is equal to the final momentum. Let v' is the velocity of the larger skater.
mv = m'v'

So, the velocity of the larger skater is 2.4 m/s.
The most accurate answer among the choices would be the fourth one, because if the weight of the air displaced is greater than the balloon's weight, the balloon will float upwards. Density of the air also plays a part. Hot air = less dense. Hope my answer has come to your help.
Answer:
A chemical change produces a new substance, while a physical change does not
Answer:
K.E = 1.28 × 10^-17 KeV
Explanation:
Given that a particle accelerator at CERN can accelerate an electron through a potentialdifference of 80 kilovolts.
To Calculate the kinetic energy (in keV) of the electron, let us first find the electron charge which is 1.60 × 10^-19C
The kinetic energy = work done
K.E = e × kV
Substitute e and the voltage into the formula
K.E = 1.60 × 10^-19 × 80
K.E = 1.28 × 10^-17 KeV
Therefore, the kinetic energy is approximately equal to 1.28 × 10^-17 KeV