This question is not complete, the complete question is;
The stagnation chamber of a wind tunnel is connected to a high-pressure air bottle farm which is outside the laboratory building. The two are connected by a long pipe of 4-in inside diameter. If the static pressure ratio between the bottle farm and the stagnation chamber is 10, and the bottle-farm static pressure is 100 atm, how long can the pipe be without choking? Assume adiabatic, subsonic, one-dimensional flow with a friction coefficient of 0.005
Answer:
the length of the pipe is 11583 in or 965.25 ft
Explanation:
Given the data in the question;
Static pressure ratio; p1/p2 = 10
friction coefficient f = 0.005
diameter of pipe, D =4 inch
first we obtain the value from FANN0 FLOW TABLE for pressure ratio of ( p1/p2 = 10 )so
4fL
/ D = 57.915
we substitute
(4×0.005×L
) / 4 = 57.915
0.005L
= 57.915
L
= 57.915 / 0.005
L
= 11583 in
Therefore, the length of the pipe is 11583 in or 965.25 ft
Explanation:
I think it helps you
I don't know the answer sorry
Answer:
4 times around
Explanation:
The total number of teeth involved will be the same for each gear. If the front gear is connected to the pedal and it goes around twice, then 2·24 = 48 teeth will have passed the reference point.
If the rear gear is attached to the wheel, and 48 teeth pass the reference point, then it will have made ...
(48 teeth)/(12 teeth/turn) = 4 turns
Answer:
it is reducely very iloretable chance for a software engineer to give an end to this question
Waves in the electric and magnetic fields are known as electromagnetic waves. You must first understand what a field is, which is just a technique of giving each square inch of space a numerical value. You may see that as a temperature field, for instance, when you look at the weather predictions and they mention the temperature in several locations. Every location on Earth has a unique temperature that can be quantified. Everywhere on Earth has its own wind velocity, which is another form of field. This field differs somewhat from the temperature field in that the wind velocity has both a direction and a magnitude, whereas the temperature just has a magnitude (how hot it is). A vector is a quantity that has both magnitude and direction, hence a field that contains vectors at every location is referred to as a vector field. Vector fields include the magnetic and electric fields. We may examine what would happen if we placed a charged particle at any given position in space. If the charged particle were to accelerate, we would state that the electric field there is the direction in which the particle is moving. In general, positively charged particles will move in the electric field's direction, whereas negatively charged particles will move in the opposite way. Because it is a vector field, the magnetic field exhibits comparable behavior. We discovered in the 19th century that the same interaction, electromagnetism, really produces both electric and magnetic fields. Like an electromagnet, a changing electric field will produce a magnetic field, and a changing magnetic field will induce an electric field (like in a generator). If your system is configured properly, you may have an electric field that fluctuates, which in turn produces a magnetic field, which in turn induces another electric field, which in turn generates another magnetic field, and so on indefinitely. At the speed of light, this oscillation between a strong magnetic field and strong electric field spreads out indefinitely. In reality, light is an electromagnetic wave—an oscillation in the electromagnetic fields. An electric or magnetic field may exist without a medium since they exist in a vacuum, which implies that waves in these fields don't require a medium like sound to flow through.