Answer:
Time taken by the
diameter droplet is 60 ns
Solution:
As per the question:
Diameter of the droplet, d = 1 mm = 0.001 m
Radius of the droplet, R = 0.0005 m
Time taken for complete evaporation, t = 1 min = 60 s
Diameter of the smaller droplet, d' = 
Diameter of the smaller droplet, R' = 
Now,
Volume of the droplet, V = 
Volume of the smaller droplet, V' = 
Volume of the droplet ∝ Time taken for complete evaporation
Thus

where
t' = taken taken by smaller droplet


t' = 
Answer:
A certain vehicle loses 3.5% of its value each year. If the vehicle has an initial value of $11,168, construct a model that represents the value of the vehicle after a certain number of years. Use your model to compute the value of the vehicle at the end of 6 years.
Explanation:
Answer:
Explanation:
From the given question:
Using the distortion energy theory to determine the factors of safety FOS can be expressed by the relation:

where; syt = strength in tension and compression = 350 MPa
The maximum shear stress theory can be expressed as:

where;

a. Using distortion - energy theory formula:



FOS = 2.183
USing the maximum-shear stress theory;




FOS = 1.977
b. σx = 110 MPa, σy = 100 MPa
Using distortion - energy theory formula:




FOS =3.322
USing the maximum-shear stress theory;



FOS = 350/2×25
FOS = 350/50
FOS = 70
c. σx = 90 MPa, σy = 20 MPa, τxy =−20 MPa
Using distortion- energy theory formula:



FOS = 350/88.88
FOS = 3.939
USing the maximum-shear stress theory;





FOS = 4.341
Answer:


Explanation:
= Area of section 1 = 
= Velocity of water at section 1 = 100 ft/min
= Specific volume at section 1 = 
= Density of fluid = 
= Area of section 2 = 
Mass flow rate is given by

The mass flow rate through the pipe is 
As the mass flowing through the pipe is conserved we know that the mass flow rate at section 2 will be the same as section 1

The speed at section 2 is
.