Answer:
Explanation:
- given S = distance from the first = 3.20cm = 0.032m, t = 1.30×10−8 s
- acceleration = 0.032 X 2 /(1.30×10−8)^2
a = 3.79 x 10^14m/s^2
E = ma /q = 9.11 x 10^-31 x 3.79 x 10^14 / 1.6 x 10^-19
E = magnitude of this electric field. = 2156.3N/C
b) Find the speed of the electron when it strikes the second plate ; V^2 = 2as
= 2 X 3.79 x 10^14 X 0.032
= 4.92 X 10^6m/s
Answer:hat are some examples of energy transformation?
The Sun transforms nuclear energy into heat and light energy.
Our bodies convert chemical energy in our food into mechanical energy for us to move.
An electric fan transforms electrical energy into kinetic energy.
Explanation:
Answer:

Explanation:
Frequency of each electromagnetic wave is same thus we can interfere them along X axis in Phase diagram.
In phase diagram indicate each wave as vector with amplitude as length and phase difference as angle. (shown in attachment)
Now take component of E2 and E3 amplitude along X direction.
Net amplitude of all E in X direction =
+ cos(45)[
+
]
⇒
Final resultant have no change in frequency
So , resultant is 
Answer: 0.25 seconds.
Explanation:
The yo-yo does 240 revolutions in one minute, and we know that one minute has 60 seconds, then the revolutions per second can be calculated as:
240 rev/60s = 4 rev/s, this will be the frequency of the yo-yo
The frequency is actually written as: f = 4 Hz = 4 s^-1
We want to find the period of this yo-yo.
The period is the duration of one cycle, and we have the relation:
f = 1/T
Where f is the frequency and T is the period, then:
T = 1/f
And we know the value of f, it is f = 4 s^-1
Then the period will be:
T = 1/(4 s^-1) = (1/4) s
Then the period of the yo-yo is 1/4 seconds = 0.25 seconds.