Answer: 1090°C
Explanation: According to combined gas laws
(P1 × V1) ÷ T1 = (P2 × V2) ÷ T2
where P1 = initial pressure of gas = 80.0 kPa
V1 = initial volume of gas = 10.0 L
T1 = initial temperature of gas = 240 °C = (240 + 273) K = 513 K
P2 = final pressure of gas = 107 kPa
V2 = final volume of gas = 20.0 L
T2 = final temperature of gas
Substituting the values,
(80.0 kPa × 10.0 L) ÷ (513 K) = (107 kPa × 20.0 L) ÷ T2
T2 = 513 K × (107 kPa ÷80.0 kPa) × (20.0 L ÷ 10.0 L)
T2 = 513 K × (1.3375) × (2)
T2 = 1372.275 K
T2 = (1372.275 - 273) °C
T2 = 1099 °C
Metalloids had properties that fall between those of metals and nonmetals (I believe that to be correct-.-)
Answer: 3.01 x 10^24 atoms
Explanation:
Based on Avogadro's law:
1 mole of any substance has 6.02 x 10^23 atoms
So, 1 mole of SI = 6.02 x 10^23 atoms
5.0 moles = Z atoms
To get the value of Z, cross multiply:
(Z atoms x 1 mole) = (6.02 x 10^23 atoms x 5.0 moles)
Z atoms•1 mole = 30.1 x 10^23 atoms•moles
Divide both sides by 1 mole
Z atoms•1 mole / 1 mole = 30.1 x 10^23 atoms•moles / 1 mole
Z = 30.1 x 10^23 atoms
[Place Z in standard form
So, Z = 3.01 x 10^24 atoms]
Thus, there are 3.01 x 10^24 atoms in 5.0 moles in SI
Answer:
cohesion
Explanation: the sticking together of particles of the same substance